IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v32y2007i2p413-424.html
   My bibliography  Save this article

Secret Correlation in Repeated Games with Imperfect Monitoring

Author

Listed:
  • Olivier Gossner

    () (Paris-Jourdan Sciences Economiques, UMR CNRS-EHESS-ENPC-ENS 8545, 48 Boulevard Jourdan, 75014 Paris, France and MEDS, Kellogg School of Management, Northwestern University, 2001 Sheridan Road, Evanston, Illinois 60208-2001)

  • Tristan Tomala

    () (CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris, Cedex 16, France)

Abstract

We characterize the maximum payoff that a team can guarantee against another in a class of repeated games with imperfect monitoring. Our result relies on the optimal tradeoff for the team between optimization of stage payoffs and generation of signals for future correlation.

Suggested Citation

  • Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
  • Handle: RePEc:inm:ormoor:v:32:y:2007:i:2:p:413-424
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/moor.1060.0248
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Johannes Hörner & Wojciech Olszewski, 2006. "The Folk Theorem for Games with Private Almost-Perfect Monitoring," Econometrica, Econometric Society, vol. 74(6), pages 1499-1544, November.
    2. JÊrÆme Renault & Tristan Tomala, 1998. "Repeated proximity games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 539-559.
    3. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273 World Scientific Publishing Co. Pte. Ltd..
    4. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    5. Lehrer, Ehud, 1991. "Internal Correlation in Repeated Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 431-456.
    6. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
    7. Forges, Francoise M, 1986. "An Approach to Communication Equilibria," Econometrica, Econometric Society, vol. 54(6), pages 1375-1385, November.
    8. Renault, Jerome & Tomala, Tristan, 2004. "Communication equilibrium payoffs in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 49(2), pages 313-344, November.
    9. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    10. Ehud Lehrer & Sylvain Sorin, 1992. "A Uniform Tauberian Theorem in Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 17(2), pages 303-307, May.
    11. Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 13-30, February.
    12. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    13. Lehrer, E, 1990. "Nash Equilibria of n-Player Repeated Games with Semi-standard Information," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 191-217.
    14. Ehud Lehrer, 1992. "Correlated Equilibria in Two-Player Repeated Games with Nonobservable Actions," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 175-199, February.
    15. von Stengel, Bernhard & Koller, Daphne, 1997. "Team-Maxmin Equilibria," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 309-321, October.
    16. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    17. Yair Goldberg, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring: The Need for Nonstationary Strategies," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 425-435, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deb, Joyee & González-Díaz, Julio & Renault, Jérôme, 2016. "Uniform folk theorems in repeated anonymous random matching games," Games and Economic Behavior, Elsevier, vol. 100(C), pages 1-23.
    2. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    3. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    4. Gossner, Olivier & Hörner, Johannes, 2010. "When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 63-84, January.
    5. Jérôme Renault & Tristan Tomala, 2011. "General Properties of Long-Run Supergames," Dynamic Games and Applications, Springer, vol. 1(2), pages 319-350, June.
    6. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    7. repec:spr:jogath:v:46:y:2017:i:4:d:10.1007_s00182-017-0569-7 is not listed on IDEAS
    8. Cingiz, Kutay & Flesch, Janos & Herings, P. Jean-Jacques & Predtetchinski, Arkadi, 2016. "Perfect Information Games where Each Player Acts Only Once," Research Memorandum 036, Maastricht University, Graduate School of Business and Economics (GSBE).
    9. Ron Peretz, 2011. "Correlation through Bounded Recall Strategies," Discussion Paper Series dp579, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:32:y:2007:i:2:p:413-424. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.