IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Folk theorems with Bounded Recall under(Almost) Perfect Monitoring

  • George Mailath
  • Wojciech Olszewski

A strategy profile in a repeated game has bounded recall L if play under the profile after two distinct histories that agree in the last L periods is equal. Mailath and Morris (2002, 2006) proved that any strict equilibrium in bounded-recall strategies of a game with full support public monitoring is robust to all perturbations of the monitoring structure towards private monitoring (the case of almost-public monitoring), while strict equilibria in unbounded-recall strategies are typically not robust. We prove that the perfect-monitoring folk theorem continues to hold when attention is restricted to strategies with bounded recall and the equilibrium is essentially required to be strict. The general result uses calendar time in an integral way in the construction of the strategy profile. If the players’ action spaces are sufficiently rich, then the strategy profile can be chosen to be independent of calendar time. Either result can then be used to prove a folk theorem for repeated games with almost-perfect almost-public monitoring.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Northwestern University, Center for Mathematical Studies in Economics and Management Science in its series Discussion Papers with number 1462.

in new window

Date of creation: Mar 2008
Date of revision:
Handle: RePEc:nwu:cmsems:1462
Contact details of provider: Postal: Center for Mathematical Studies in Economics and Management Science, Northwestern University, 580 Jacobs Center, 2001 Sheridan Road, Evanston, IL 60208-2014
Phone: 847/491-3527
Fax: 847/491-2530
Web page:

More information through EDIRC

Order Information: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stephen Morris & George J Mailath, 2005. "Coordination Failure in Repeated Games with Almost-Public Monitoring," 2005 Meeting Papers 25, Society for Economic Dynamics.
  2. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
  3. George J. Mailath & Stephen Morris, 2000. "Repeated Games with Almost-Public Monitoring," Econometric Society World Congress 2000 Contributed Papers 0661, Econometric Society.
  4. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
  5. V. Bhaskar & George J. Mailath & Stephen Morris, 2006. "Purification in the Infinitely-Repeated Prisoners' Dilemma," Cowles Foundation Discussion Papers 1571, Cowles Foundation for Research in Economics, Yale University.
  6. Sergiu Hart & Andreu Mas-Colell, 2004. "Stochastic Uncoupled Dynamics and Nash Equilibrium," Levine's Bibliography 122247000000000466, UCLA Department of Economics.
  7. Jeffrey C. Ely & Johannes Hörner & Wojciech Olszewski, 2005. "Belief-Free Equilibria in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 377-415, 03.
  8. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
  9. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
  10. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
  11. Harold L. Cole & Narayana R. Kocherlakota, 2000. "Finite memory and imperfect monitoring," Working Papers 604, Federal Reserve Bank of Minneapolis.
  12. George Mailath & Wojciech Olszewski, 2008. "Folk theorems with Bounded Recall under(Almost) Perfect Monitoring," Discussion Papers 1462, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  13. Barlo, Mehmet & Carmona, Guilherme, 2004. "Time Dependent Bounded Recall Strategies Are Enough to Play the Discounted Repeated Prisoners Dilemma," FEUNL Working Paper Series wp449, Universidade Nova de Lisboa, Faculdade de Economia.
  14. Matsushima, Hitoshi, 1991. "On the theory of repeated games with private information : Part I: anti-folk theorem without communication," Economics Letters, Elsevier, vol. 35(3), pages 253-256, March.
  15. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-96, March.
  16. Lehrer Ehud, 1994. "Finitely Many Players with Bounded Recall in Infinitely Repeated Games," Games and Economic Behavior, Elsevier, vol. 7(3), pages 390-405, November.
  17. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
  18. Sabourian, Hamid, 1998. "Repeated games with M-period bounded memory (pure strategies)," Journal of Mathematical Economics, Elsevier, vol. 30(1), pages 1-35, August.
  19. Tristan Tomala & Jerome Renault & Marco Scarsini, 2007. "A Minority Game with Bounded Recall," Post-Print hal-00538967, HAL.
  20. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
  21. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796, July.
  22. Bhaskar, V., 1994. "Informational Constraints and the Overlapping Generations Model : Folk and Anti-Folk Theorems," Discussion Paper 1994-85, Tilburg University, Center for Economic Research.
  23. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
  24. Itzhak Gilboa & David Schmeidler, 1989. "Infinite Histories and Steady Orbits in Repeated Games," Discussion Papers 846, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  25. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  26. Johannes Horner & Wojciech Olszewski, 2005. "The Folk Theorem for Games with Private, Almost-Perfect Monitoring," NajEcon Working Paper Reviews 172782000000000006,
  27. repec:tpr:qjecon:v:124:y:2009:i:4:p:1773-1814 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1462. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fran Walker)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.