IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpga/0405006.html
   My bibliography  Save this paper

Time Dependent Bounded Recall Strategies Are Enough to Play the Discounted Repeated Prisoners' Dilemma

Author

Listed:
  • Mehmet Barlo

    (Sabanc{\i} University)

  • Guilherme Carmona

    (Universidade Nova de Lisboa)

Abstract

We show that for any discount factor, there is a natural number $M$ such that all subgame perfect equilibrium outcomes of the discounted repeated prisoners' dilemma can be obtained by subgame perfect equilibrium strategies with the following property: current play depends only on the number of the time-index and on the history of the last $M$ periods. Therefore, players who are restricted to using pure strategies, have to remember, at the most, $M$ periods in order to play any equilibrium outcome of the discounted repeated prisoners' dilemma. This result leads us to introduce the notion of time dependent complexity, and to conclude that in the repeated prisoners' dilemma, restricting attention to finite time dependent complex strategies is enough.

Suggested Citation

  • Mehmet Barlo & Guilherme Carmona, 2004. "Time Dependent Bounded Recall Strategies Are Enough to Play the Discounted Repeated Prisoners' Dilemma," Game Theory and Information 0405006, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpga:0405006
    Note: Type of Document - pdf; pages: 11. None
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/game/papers/0405/0405006.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    2. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    3. Cole, Harold L. & Kocherlakota, Narayana R., 2005. "Finite memory and imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 53(1), pages 59-72, October.
    4. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2009. "Repeated games with one-memory," Journal of Economic Theory, Elsevier, vol. 144(1), pages 312-336, January.
    5. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barlo, Mehmet & Carmona, Guilherme, 2007. "One - Memory in Repeated Games," FEUNL Working Paper Series wp500, Universidade Nova de Lisboa, Faculdade de Economia.
    2. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.

    More about this item

    Keywords

    Repeated Prisoners' Dilemma; Memory; Bounded Rationality;

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0405006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA) or (Christopher F. Baum). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.