IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Testing Threats in Repeated Games

  • Spiegler, R.

I introduce a solution concept for infinite-horizon games, called ``Experimental Equilibrium``, in which players systematically test threats that affect their optimal response. Both the tests and the optimal response are part of equilibrium behavior.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Tel Aviv in its series Papers with number 2001-28.

in new window

Length: 32 pages
Date of creation: 2001
Date of revision:
Handle: RePEc:fth:teavfo:2001-28
Phone: 972-3-640-9255
Fax: 972-3-640-5815
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Osborne, M-J & Rubinstein, A, 1997. "Games with Procedurally Rational Players," Papers 4-97, Tel Aviv.
  2. Eliaz, Kfir, 2003. "Nash equilibrium when players account for the complexity of their forecasts," Games and Economic Behavior, Elsevier, vol. 44(2), pages 286-310, August.
  3. Philippe Jehiel, 2005. "Analogy-based Expectation Equilibrium," Post-Print halshs-00754070, HAL.
  4. Martin J Osborne & Ariel Rubinstein, 2009. "A Course in Game Theory," Levine's Bibliography 814577000000000225, UCLA Department of Economics.
  5. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
  6. David Kreps & Paul Milgrom & John Roberts & Bob Wilson, 2010. "Rational Cooperation in the Finitely Repeated Prisoners' Dilemma," Levine's Working Paper Archive 239, David K. Levine.
  7. Spiegler, Ran, 2002. "Equilibrium in Justifiable Strategies: A Model of Reason-Based Choice in Extensive-Form Games," Review of Economic Studies, Wiley Blackwell, vol. 69(3), pages 691-706, July.
  8. Ehud Kalai & William Stanford, 1986. "Finite Rationality and Interpersonal Complexity in Repeated Games," Discussion Papers 679, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  9. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
  10. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
  11. Banks, Jeffrey S. & Sundaram, Rangarajan K., 1990. "Repeated games, finite automata, and complexity," Games and Economic Behavior, Elsevier, vol. 2(2), pages 97-117, June.
  12. Rubinstein, Ariel, 1991. "Comments on the Interpretation of Game Theory," Econometrica, Econometric Society, vol. 59(4), pages 909-24, July.
  13. Spiegler, R., 1999. "Reason-Based Choice and Justifiability in Extensive Form Games," Papers 19-99, Tel Aviv.
  14. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-81, November.
  15. Reinhard Selten & Michael Mitzkewitz & Gerald R. Uhlich, 1997. "Duopoly Strategies Programmed by Experienced Players," Econometrica, Econometric Society, vol. 65(3), pages 517-556, May.
  16. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fth:teavfo:2001-28. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.