IDEAS home Printed from https://ideas.repec.org/p/ivi/wpasad/2006-28.html
   My bibliography  Save this paper

Codification schemes and finite automata

Author

Listed:
  • Amparo Urbano Salvador

    (Universitat de València)

  • Penélope Hernández Rojas

    (Universidad de Alicante)

Abstract

This paper is a note on how Information Theory and Codification Theory are helpful in the computational design both of communication protocols and strategy sets in the framework of finitely repeated games played by boundedly rational agents. More precisely, we show the usefulness of both theories to improve the existing automata bounds of Neyman¿s (1998) work on finitely repeated games played by finite automata.

Suggested Citation

  • Amparo Urbano Salvador & Penélope Hernández Rojas, 2000. "Codification schemes and finite automata," Working Papers. Serie AD 2006-28, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  • Handle: RePEc:ivi:wpasad:2006-28
    as

    Download full text from publisher

    File URL: http://www.ivie.es/downloads/docs/wpasad/wpasad-2006-28.pdf
    File Function: Fisrt version / Primera version, 2000
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    2. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    3. Olivier Gossner & Penélope Hernández & Abraham Neyman, 2006. "Optimal Use of Communication Resources," Econometrica, Econometric Society, vol. 74(6), pages 1603-1636, November.
    4. Gossner, Olivier & Vieille, Nicolas, 2002. "How to play with a biased coin?," Games and Economic Behavior, Elsevier, vol. 41(2), pages 206-226, November.
    5. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    6. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
    7. Abraham Neyman & Daijiro Okada, 2000. "Two-person repeated games with finite automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(3), pages 309-325.
    8. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    9. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    10. Zemel, Eitan, 1989. "Small talk and cooperation: A note on bounded rationality," Journal of Economic Theory, Elsevier, vol. 49(1), pages 1-9, October.
    11. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    12. Olivier Gossner & Penelope Hernandez & Abraham Neyman, 2003. "Online Matching Pennies," Discussion Paper Series dp316, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 13-30, February.
    14. O. Gossner & P. Hernandez, 2001. "On the complexity of coordination," THEMA Working Papers 2001-21, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Complexity; codification; repeated games; finite automata;

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ivi:wpasad:2006-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Departamento de Edición). General contact details of provider: http://edirc.repec.org/data/ievages.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.