IDEAS home Printed from https://ideas.repec.org/p/huj/dispap/dp411.html
   My bibliography  Save this paper

Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall

Author

Listed:
  • Abraham Neyman
  • Daijiro Okada

Abstract

One way to express bounded rationality of a player in a game theoretic models is by specifying a set of feasible strategies for that player. In dynamic game models with finite automata and bounded recall strategies, for example, feasibility of strategies is determined via certain complexity measures: the number of states of automata and the length of recall. Typically in these models, a fixed finite bound on the complexity is imposed resulting in finite sets of feasible strategies. As a consequence, the number of distinct feasible strategies in any subgame is finite. Also, the number of distinct strategies induced in the first T stages is bounded by a constant that is independent of T. In this paper, we initiate an investigation into a notion of feasibility that reflects varying degree of bounded rationality over time. Such concept must entail properties of a strategy, or a set of strategies, that depend on time. Specifically, we associate to each subset Ψ i of the full (theoretically possible) strategy set a function y i from the set of positive integers to itself. The value y i (t) represents the number of strategies in Ψ i that are distinguishable in the first t stages. The set Ψ i may contain infinitely many strategies, but it can differ from the fully rational case in the way y i grows reflecting a broad implication of bounded rationality that may be alleviated, or intensified, over time. We examine how the growth rate of y i affects equilibrium outcomes of repeated games. In particular, we derive an upper bound on the individually rational payoff of repeated games where player 1, with a feasible strategy set Ψ 1 , plays against a fully rational player 2. We will show that the derived bound is tight in that a specific, and simple, set Ψ 1 exists that achieves the upper bound. As a special case, we study repeated games with non-stationary bounded recall strategies where the length of recall is allowed to vary in the course of the game. We will show that a player with bounded recall can guarantee the minimax payoff of the stage game even against a player with full recall so long as he can remember, at stage t, at least K log(t) stages back for some constant K >0. Thus, in order to guarantee the minimax payoff, it suffices to remember only a vanishing fraction of the past. A version of the folk theorem is provided for this class of games.

Suggested Citation

  • Abraham Neyman & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall," Discussion Paper Series dp411, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
  • Handle: RePEc:huj:dispap:dp411
    as

    Download full text from publisher

    File URL: http://ratio.huji.ac.il/sites/default/files/publications/dp411.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert J. Aumann & Lloyd S. Shapley, 2013. "Long Term Competition -- A Game-Theoretic Analysis," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 627-640, November.
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. Olivier Gossner & Penélope Hernández & Abraham Neyman, 2006. "Optimal Use of Communication Resources," Econometrica, Econometric Society, vol. 74(6), pages 1603-1636, November.
    4. Gossner, Olivier & Vieille, Nicolas, 2002. "How to play with a biased coin?," Games and Economic Behavior, Elsevier, vol. 41(2), pages 206-226, November.
    5. Abraham Neyman & Daijiro Okada, 2000. "Two-person repeated games with finite automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(3), pages 309-325.
    6. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    7. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    8. Lehrer, Ehud, 1988. "Repeated games with stationary bounded recall strategies," Journal of Economic Theory, Elsevier, vol. 46(1), pages 130-144, October.
    9. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    10. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peretz, Ron, 2012. "The strategic value of recall," Games and Economic Behavior, Elsevier, vol. 74(1), pages 332-351.
    2. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    3. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Levine's Working Paper Archive 122247000000001945, David K. Levine.
    4. Ron Peretz, 2011. "Correlation through Bounded Recall Strategies," Discussion Paper Series dp579, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Ron Peretz, 2007. "The Strategic Value of Recall," Discussion Paper Series dp470, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    7. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    8. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    9. René Levínský & Abraham Neyman & Miroslav Zelený, 2020. "Should I remember more than you? Best responses to factored strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1105-1124, December.
    10. Ron Peretz, 2007. "The Strategic Value of Recall," Levine's Bibliography 122247000000001774, UCLA Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    2. Abraham Neyman & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall," Levine's Bibliography 122247000000000920, UCLA Department of Economics.
    3. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    4. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    6. Hu, Tai-Wei, 2014. "Unpredictability of complex (pure) strategies," Games and Economic Behavior, Elsevier, vol. 88(C), pages 1-15.
    7. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    8. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    9. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    10. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.
    11. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    12. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    13. O'Connell, Thomas C. & Stearns, Richard E., 2003. "On finite strategy sets for finitely repeated zero-sum games," Games and Economic Behavior, Elsevier, vol. 43(1), pages 107-136, April.
    14. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    15. Sent, Esther-Mirjam, 2004. "The legacy of Herbert Simon in game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 303-317, March.
    16. van Damme, E.E.C., 1995. "Game theory : The next stage," Other publications TiSEM 7779b0f9-bef5-45c7-ae6b-7, Tilburg University, School of Economics and Management.
    17. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. GOSSNER, Olivier, 1998. "Repeated games played by cryptographically sophisticated players," LIDAM Discussion Papers CORE 1998035, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Michele Piccione & Ariel Rubinstein, 2003. "Modeling the Economic Interaction of Agents With Diverse Abilities to Recognize Equilibrium Patterns," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 212-223, March.
    20. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.

    More about this item

    Keywords

    bounded rationality; strategy set growth; strategic complexity; nonstationary bounded recall; repeated games; entropy;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:huj:dispap:dp411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Simkin (email available below). General contact details of provider: https://edirc.repec.org/data/crihuil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.