IDEAS home Printed from
   My bibliography  Save this paper

Repeated Games played by Cryptographically Sophesticated Players


  • Gossner, O.


One of the main goals of bounded rationality models is to understand the limitations of agent's abilities in building representations of strategic situations as maximization problems and in solving these problems. Modern cryptography relies on the assumption that agents's computations should be implementable by polynominal Turing machines and on the exstence of a trapdoor function. Uder those assumption, we prove that very correlated equilibrium of the original infinitely repreated game can be implemented through public communication only.

Suggested Citation

  • Gossner, O., 1999. "Repeated Games played by Cryptographically Sophesticated Players," Papers 99-07, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
  • Handle: RePEc:fth:pnegmi:99-07

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Robert J. Aumann & Lloyd S. Shapley, 2013. "Long Term Competition -- A Game-Theoretic Analysis," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 627-640, November.
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. José E. Vila & Amparo Urbano Salvador, 1997. "Pre-play communication and coordination in two-player games," Working Papers. Serie AD 1997-26, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    4. Forges, Francoise, 1990. "Universal Mechanisms," Econometrica, Econometric Society, vol. 58(6), pages 1341-1364, November.
    5. Binmore, Ken, 1987. "Modeling Rational Players: Part I," Economics and Philosophy, Cambridge University Press, vol. 3(02), pages 179-214, October.
    6. Binmore, Ken, 1988. "Modeling Rational Players: Part II," Economics and Philosophy, Cambridge University Press, vol. 4(01), pages 9-55, April.
    7. José E. Vila & Amparo Urbano, 1999. "- Unmediated Talk Under Incomplete Information," Working Papers. Serie AD 1999-07, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    8. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    9. Amparo Urbano & Penélope Hernández, 2001. "Communication And Automata," Working Papers. Serie AD 2001-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    10. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    11. Urbano, A. & Vila, J. E., 2004. "Unmediated communication in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 46(1), pages 143-173, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:wsi:acsxxx:v:14:y:2011:i:06:n:s021952591100344x is not listed on IDEAS
    2. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    3. Urbano, A. & Vila, J. E., 2004. "Unmediated communication in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 46(1), pages 143-173, January.
    4. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    6. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    7. Hannu Vartiainen, 2009. "A Simple Model of Secure Public Communication," Theory and Decision, Springer, vol. 67(1), pages 101-122, July.

    More about this item


    GAME THEORY mathematiques et informatique; 200; avenue de la Republique 9 2001 Nanterre CEDEX. 23p.;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pnegmi:99-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.