IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/200514.html
   My bibliography  Save this paper

Growth of Strategy Sets, Entropy and Nonstationary Bounded Recall

Author

Listed:
  • Abraham Neyman Null

    (Hebrew University)

  • Daijiro Okada

    (Rutgers University)

Abstract

This paper initiates the study of long term interactions where players' bounded rationality varies over time. Time dependent bounded rationality is reflected in part in the number $\psi(t)$ of distinct strategies in the first $t$-stages. We examine how the growth rate of $\psi_i(t)$ affects equilibrium outcomes of repeated games, and, as a special case, we study the repeated games with nonstationary bounded recall.

Suggested Citation

  • Abraham Neyman Null & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy and Nonstationary Bounded Recall," Departmental Working Papers 200514, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:200514
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2005-14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert J. Aumann & Lloyd S. Shapley, 2013. "Long Term Competition -- A Game-Theoretic Analysis," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 627-640, November.
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. Olivier Gossner & Penélope Hernández & Abraham Neyman, 2006. "Optimal Use of Communication Resources," Econometrica, Econometric Society, vol. 74(6), pages 1603-1636, November.
    4. Gossner, Olivier & Vieille, Nicolas, 2002. "How to play with a biased coin?," Games and Economic Behavior, Elsevier, vol. 41(2), pages 206-226, November.
    5. Abraham Neyman & Daijiro Okada, 2000. "Two-person repeated games with finite automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(3), pages 309-325.
    6. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    7. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    8. Lehrer, Ehud, 1988. "Repeated games with stationary bounded recall strategies," Journal of Economic Theory, Elsevier, vol. 46(1), pages 130-144, October.
    9. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peretz, Ron, 2012. "The strategic value of recall," Games and Economic Behavior, Elsevier, vol. 74(1), pages 332-351.
    2. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    3. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Levine's Working Paper Archive 122247000000001945, David K. Levine.
    4. Ron Peretz, 2011. "Correlation through Bounded Recall Strategies," Discussion Paper Series dp579, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Ron Peretz, 2007. "The Strategic Value of Recall," Discussion Paper Series dp470, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    7. Ron Peretz, 2013. "Correlation through bounded recall strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 867-890, November.
    8. René Levínský & Abraham Neyman & Miroslav Zelený, 2020. "Should I remember more than you? Best responses to factored strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1105-1124, December.
    9. Ron Peretz, 2007. "The Strategic Value of Recall," Levine's Bibliography 122247000000001774, UCLA Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    2. Abraham Neyman & Daijiro Okada, 2005. "Growth of Strategy Sets, Entropy, and Nonstationary Bounded Recall," Levine's Bibliography 122247000000000920, UCLA Department of Economics.
    3. Abraham Neyman, 2008. "Learning Effectiveness and Memory Size," Discussion Paper Series dp476, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    4. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    5. Hu, Tai-Wei, 2014. "Unpredictability of complex (pure) strategies," Games and Economic Behavior, Elsevier, vol. 88(C), pages 1-15.
    6. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    7. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    8. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    9. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    10. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    11. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.
    12. O'Connell, Thomas C. & Stearns, Richard E., 2003. "On finite strategy sets for finitely repeated zero-sum games," Games and Economic Behavior, Elsevier, vol. 43(1), pages 107-136, April.
    13. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    14. GOSSNER, Olivier, 1998. "Repeated games played by cryptographically sophisticated players," LIDAM Discussion Papers CORE 1998035, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Michele Piccione & Ariel Rubinstein, 2003. "Modeling the Economic Interaction of Agents With Diverse Abilities to Recognize Equilibrium Patterns," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 212-223, March.
    16. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.
    17. Kalai, E & Neme, A, 1992. "The Strength of a Little Perfection," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 335-355.
    18. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    19. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Andriy Zapechelnyuk, 2008. "Better-Reply Dynamics with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 869-879, November.

    More about this item

    Keywords

    bounded rationality; strategy set growth; strategic complexity; nonstationary bounded recall; repeated games;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200514. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/derutus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.