IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/99-31.html
   My bibliography  Save this paper

How to play with a biased coin ?

Author

Listed:
  • O. Gossner
  • N. Vieille

Abstract

We characterize the maxmin of repeated zero-sum games in which player one plays in pure strategies conditional on the private observation of a fixed sequence of random variables. Meanwhile we introduce a definition of a strategic distance between probability measures, and relate it to the standard Kullback distance.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • O. Gossner & N. Vieille, 1999. "How to play with a biased coin ?," THEMA Working Papers 99-31, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:99-31
    as

    Download full text from publisher

    File URL: http://www.u-cergy.fr/IMG/documents//99-31Gossner.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lehrer Ehud, 1994. "Finitely Many Players with Bounded Recall in Infinitely Repeated Games," Games and Economic Behavior, Elsevier, vol. 7(3), pages 390-405, November.
    2. Lehrer, Ehud, 1991. "Internal Correlation in Repeated Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 431-456.
    3. Neyman, Abraham & Okada, Daijiro, 1999. "Strategic Entropy and Complexity in Repeated Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 191-223, October.
    4. Neyman, Abraham & Okada, Daijiro, 2000. "Repeated Games with Bounded Entropy," Games and Economic Behavior, Elsevier, vol. 30(2), pages 228-247, February.
    5. Lehrer, Ehud & Smorodinsky, Rann, 2000. "Relative entropy in sequential decision problems1," Journal of Mathematical Economics, Elsevier, vol. 33(4), pages 425-439, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Battaglini & Stephen Coate, 2008. "A Dynamic Theory of Public Spending, Taxation, and Debt," American Economic Review, American Economic Association, vol. 98(1), pages 201-236, March.
    2. Olivier Gossner & Rida Laraki & Tristan Tomala, 2004. "Maxmin computation and optimal correlation in repeated games with signals," Working Papers hal-00242940, HAL.
    3. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    4. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.
    5. GOSSNER, Olivier & TOMALA, Tristan, 2003. "Entropy and codification in repeated games with imperfect monitoring," CORE Discussion Papers 2003033, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. repec:dau:papers:123456789/6885 is not listed on IDEAS
    7. Gossner, Olivier & Hörner, Johannes, 2010. "When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 63-84, January.
    8. Hu, Tai-Wei, 2014. "Unpredictability of complex (pure) strategies," Games and Economic Behavior, Elsevier, vol. 88(C), pages 1-15.
    9. Olivier Gossner & Jöhannes Horner, 2006. "When is the individually rational payoff in a repeated game equal to the minmax payoff?," Discussion Papers 1440, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    More about this item

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:99-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stefania Marcassa). General contact details of provider: http://edirc.repec.org/data/themafr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.