IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Efficiency and Observability with Long-Run and Short-Run Players

  • Fudenberg Drew
  • Levine David K.

We present a general algorithm for computing the limit, as δ → 1, of the set of payoffs of perfect public equilibria of repeated games with long-run and short-run players, allowing for the possibility that the players′ actions are not observable by their opponents. We illustrate the algorithm with two economic examples. In a simple partnership we show how to compute the equilibrium payoffs when the folk theorem fails. In an investment game, we show that two competing capitalists subject to moral hazard may both become worse off if their firms are merged and they split the profits from the merger. Finally, we show that with short-run players each long-run player′s highest equilibrium payoff is generally greater when their realized actions are observed.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Theory.

Volume (Year): 62 (1994)
Issue (Month): 1 (February)
Pages: 103-135

in new window

Handle: RePEc:eee:jetheo:v:62:y:1994:i:1:p:103-135
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Edward J Green & Robert H Porter, 1997. "Noncooperative Collusion Under Imperfect Price Information," Levine's Working Paper Archive 1147, David K. Levine.
  2. Kreps, David M. & Wilson, Robert, 1982. "Reputation and imperfect information," Journal of Economic Theory, Elsevier, vol. 27(2), pages 253-279, August.
  3. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-54, May.
  4. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:62:y:1994:i:1:p:103-135. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.