IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v72y2011i1p86-99.html
   My bibliography  Save this article

Repeated games with asynchronous monitoring of an imperfect signal

Author

Listed:
  • Fudenberg, Drew
  • Olszewski, Wojciech

Abstract

We consider a long-run player facing a sequence of short-run opponents who receive noisy signals of the long-run player's past actions. We modify the standard, synchronous-action, model by supposing that players observe an underlying public signal of the opponent's actions at random and privately known times. In one modification, the public signals are Poisson events and either the observations occur within a small epsilon time interval or the observations have exponential waiting times. In the second modification, the underlying signal is the position of a diffusion process. We show that in the Poisson cases the high-frequency limit is the same as in the (Fudenberg and Levine, 2007) and (Fudenberg and Levine, 2009) study of limits of high-frequency public signals, but that the limits can differ when the signals correspond to a diffusion.

Suggested Citation

  • Fudenberg, Drew & Olszewski, Wojciech, 2011. "Repeated games with asynchronous monitoring of an imperfect signal," Games and Economic Behavior, Elsevier, vol. 72(1), pages 86-99, May.
  • Handle: RePEc:eee:gamebe:v:72:y:2011:i:1:p:86-99
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(10)00135-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yamamoto, Yuichi, 2009. "A limit characterization of belief-free equilibrium payoffs in repeated games," Journal of Economic Theory, Elsevier, vol. 144(2), pages 802-824, March.
    2. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    3. Roger Lagunoff & Akihiko Matsui, 1997. "Asynchronous Choice in Repeated Coordination Games," Econometrica, Econometric Society, vol. 65(6), pages 1467-1478, November.
    4. Eduardo Faingold & Yuliy Sannikov, 2007. "Equilibrium Degeneracy and Reputation Effects," NajEcon Working Paper Reviews 843644000000000216, www.najecon.org.
    5. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    6. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307, World Scientific Publishing Co. Pte. Ltd..
    7. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    8. Johannes Hörner & Wojciech Olszewski, 2009. "How Robust is the Folk Theorem?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1773-1814.
    9. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    10. Abreu, Dilip & Milgrom, Paul & Pearce, David, 1991. "Information and Timing in Repeated Partnerships," Econometrica, Econometric Society, vol. 59(6), pages 1713-1733, November.
    11. Jeffrey C. Ely & Johannes Hörner & Wojciech Olszewski, 2005. "Belief-Free Equilibria in Repeated Games," Econometrica, Econometric Society, vol. 73(2), pages 377-415, March.
    12. Drew Fudenberg & David K. Levine, 2008. "Continuous time limits of repeated games with imperfect public monitoring," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 17, pages 369-388, World Scientific Publishing Co. Pte. Ltd..
    13. Yuliy Sannikov & Andrzej Skrzypacz, 2010. "The Role of Information in Repeated Games With Frequent Actions," Econometrica, Econometric Society, vol. 78(3), pages 847-882, May.
    14. Drew Fudenberg & David M. Kreps & Eric S. Maskin, 1990. "Repeated Games with Long-run and Short-run Players," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(4), pages 555-573.
    15. Klein, Benjamin & Leffler, Keith B, 1981. "The Role of Market Forces in Assuring Contractual Performance," Journal of Political Economy, University of Chicago Press, vol. 89(4), pages 615-641, August.
    16. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osório, António (António Miguel), 2015. "Brownian Signals: Information Quality, Quantity and Timing in Repeated Games," Working Papers 2072/260962, Universitat Rovira i Virgili, Department of Economics.
    2. Osório, António (António Miguel), 2015. "Some Notes and Comments on the Efficient use of Information in Repeated Games with Poisson Signals," Working Papers 2072/249233, Universitat Rovira i Virgili, Department of Economics.
    3. Morris, Stephen, 2014. "Coordination, timing and common knowledge," Research in Economics, Elsevier, vol. 68(4), pages 306-314.
    4. Osório António M., 2012. "A Folk Theorem for Games when Frequent Monitoring Decreases Noise," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-27, April.
    5. Sugaya, Takuo & Takahashi, Satoru, 2013. "Coordination failure in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1891-1928.
    6. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    7. António Osório, 2018. "Brownian Signals: Information Quality, Quantity and Timing in Repeated Games," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 387-404, August.
    8. Osório Costa, Antonio Miguel, 2012. "The Limits of Discrete Time Repeated Games:Some Notes and Comments," Working Papers 2072/203171, Universitat Rovira i Virgili, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sugaya, Takuo & Takahashi, Satoru, 2013. "Coordination failure in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1891-1928.
    2. Fudenberg, Drew & Ishii, Yuhta & Kominers, Scott Duke, 2014. "Delayed-response strategies in repeated games with observation lags," Journal of Economic Theory, Elsevier, vol. 150(C), pages 487-514.
    3. Takuo Sugaya & Yuichi Yamamoto, 2019. "Common Learning and Cooperation in Repeated Games," PIER Working Paper Archive 19-008, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Osório António M., 2012. "A Folk Theorem for Games when Frequent Monitoring Decreases Noise," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-27, April.
    5. Daehyun Kim & Ichiro Obara, 2023. "Asymptotic Value of Monitoring Structures in Stochastic Games," Papers 2308.09211, arXiv.org, revised Jul 2024.
    6. Heller, Yuval, 2017. "Instability of belief-free equilibria," Journal of Economic Theory, Elsevier, vol. 168(C), pages 261-286.
    7. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    8. Osório-Costa, António M., 2009. "Efficiency Gains in Repeated Games at Random Moments in Time," MPRA Paper 13105, University Library of Munich, Germany.
    9. McLean, Richard & Obara, Ichiro & Postlewaite, Andrew, 2014. "Robustness of public equilibria in repeated games with private monitoring," Journal of Economic Theory, Elsevier, vol. 153(C), pages 191-212.
    10. Yuichi Yamamoto, 2013. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 13-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Sugaya, Takuo & Yamamoto, Yuichi, 2020. "Common learning and cooperation in repeated games," Theoretical Economics, Econometric Society, vol. 15(3), July.
    12. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    13. Yuichi Yamamoto, 2012. "Individual Learning and Cooperation in Noisy Repeated Games," PIER Working Paper Archive 12-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    14. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "Learning from private information in noisy repeated games," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1733-1769, September.
    15. Drew Fudenberg & David K. Levine, 2008. "Continuous time limits of repeated games with imperfect public monitoring," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 17, pages 369-388, World Scientific Publishing Co. Pte. Ltd..
    16. Michihiro Kandori, 2011. "Weakly Belief‐Free Equilibria in Repeated Games With Private Monitoring," Econometrica, Econometric Society, vol. 79(3), pages 877-892, May.
    17. Hino, Yoshifumi, 2018. "A folk theorem in infinitely repeated prisoner's dilemma with small observation cost," MPRA Paper 96010, University Library of Munich, Germany, revised 13 Sep 2019.
    18. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    19. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    20. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:72:y:2011:i:1:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.