IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/618897000000000865.html
   My bibliography  Save this paper

Perfect Public Equilibrium When Players are Patient

Author

Listed:
  • Drew Fudenberg
  • David K Levine
  • Satoru Takahashi

Abstract

We provide a characterization of the limit set of perfect public equilibrium payoffs of repeated games with imperfect public monitoring as the discount factor goes to one. Our result covers general stage games including those that fail a “full-dimensionality†condition that had been imposed in past work. It also provides a characterization of the limit set when the strategies are restricted in a way that endogenously makes the full-dimensionality condition fail, as in the strongly symmetric equilibrium studied by Abreu [Abreu, D., 1986. Extremal equilibria of oligopolistic supergames. J. Econ. Theory 39, 191–228] and Abreu et al. [Abreu, D., Pearce, D., Stacchetti, E., 1986. Optimal cartel equilibria with imperfect monitoring. J. Econ. Theory 39, 251–269]. Finally, we use our characterization to give a sufficient condition for the exact achievability of first-best outcomes. Equilibria of this type, for which all continuation payoffs lie on the Pareto frontier, have a strong renegotiation-proofness property: regardless of the history, players can never unanimously prefer another equilibrium.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Drew Fudenberg & David K Levine & Satoru Takahashi, 2004. "Perfect Public Equilibrium When Players are Patient," Levine's Working Paper Archive 618897000000000865, David K. Levine.
  • Handle: RePEc:cla:levarc:618897000000000865
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/papers/lowdim.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeffrey Ely & Drew Fudenberg & David K. Levine, 2008. "When is reputation bad?," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 10, pages 177-205 World Scientific Publishing Co. Pte. Ltd..
    2. Athey, Susan & Bagwell, Kyle, 2001. "Optimal Collusion with Private Information," RAND Journal of Economics, The RAND Corporation, vol. 32(3), pages 428-465, Autumn.
    3. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307 World Scientific Publishing Co. Pte. Ltd..
    4. Farrell, Joseph & Maskin, Eric, 1989. "Renegotiation in repeated games," Games and Economic Behavior, Elsevier, vol. 1(4), pages 327-360, December.
    5. Wen, Quan, 1994. "The "Folk Theorem" for Repeated Games with Complete Information," Econometrica, Econometric Society, vol. 62(4), pages 949-954, July.
    6. Drew Fudenberg & David M. Kreps & Eric S. Maskin, 1990. "Repeated Games with Long-run and Short-run Players," Review of Economic Studies, Oxford University Press, vol. 57(4), pages 555-573.
    7. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    8. Fudenberg, Drew & Maskin, Eric, 1986. "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information," Econometrica, Econometric Society, vol. 54(3), pages 533-554, May.
    9. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
    10. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    11. Abreu, Dilip, 1986. "Extremal equilibria of oligopolistic supergames," Journal of Economic Theory, Elsevier, vol. 39(1), pages 191-225, June.
    12. Fudenberg, D. & Maskin, E., 1990. "Nash and perfect equilibria of discounted repeated games," Journal of Economic Theory, Elsevier, vol. 51(1), pages 194-206, June.
    13. Michihiro Kandori & Hitoshi Matsushima, 1998. "Private Observation, Communication and Collusion," Econometrica, Econometric Society, vol. 66(3), pages 627-652, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:618897000000000865. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine). General contact details of provider: http://www.dklevine.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.