IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2000031.html
   My bibliography  Save this paper

Stationary equilibria in stochastic games : structure, selection, and computation

Author

Listed:
  • Herings, P.J.J.

    (Microeconomics & Public Economics)

  • Peeters, R.J.A.P.

    (Microeconomics & Public Economics)

Abstract

No abstract is available for this item.

Suggested Citation

  • Herings, P.J.J. & Peeters, R.J.A.P., 2000. "Stationary equilibria in stochastic games : structure, selection, and computation," Research Memorandum 031, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2000031
    DOI: 10.26481/umamet.2000031
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/809475/guid-966e5256-9faa-435a-a439-9590acc9e53f-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umamet.2000031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1996. "Tracing equilibria in extensive games by complementary pivoting," Other publications TiSEM 438ed645-c6be-469e-a7d9-7, Tilburg University, School of Economics and Management.
    2. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    3. Judd, Kenneth L., 1997. "Computational economics and economic theory: Substitutes or complements?," Journal of Economic Dynamics and Control, Elsevier, vol. 21(6), pages 907-942, June.
    4. Robert Wilson, 2010. "Computing Equilibria of n-person Games," Levine's Working Paper Archive 402, David K. Levine.
    5. Bergemann, Dirk & Valimaki, Juuso, 1996. "Learning and Strategic Pricing," Econometrica, Econometric Society, vol. 64(5), pages 1125-1149, September.
    6. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    7. Jean-Jacques Herings, P., 1997. "A globally and universally stable price adjustment process," Journal of Mathematical Economics, Elsevier, vol. 27(2), pages 163-193, March.
    8. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    9. Herings, P. Jean-Jacques & van den Elzen, Antoon, 2002. "Computation of the Nash Equilibrium Selected by the Tracing Procedure in N-Person Games," Games and Economic Behavior, Elsevier, vol. 38(1), pages 89-117, January.
    10. P. Jean-Jacques Herings, 2000. "Two simple proofs of the feasibility of the linear tracing procedure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 485-490.
    11. Pakes, Ariel & Ericson, Richard, 1998. "Empirical Implications of Alternative Models of Firm Dynamics," Journal of Economic Theory, Elsevier, vol. 79(1), pages 1-45, March.
    12. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    13. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    14. Hans Haller & Roger Lagunoff, 2000. "Genericity and Markovian Behavior in Stochastic Games," Econometrica, Econometric Society, vol. 68(5), pages 1231-1248, September.
    15. Mas-Colell,Andreu, 1990. "The Theory of General Economic Equilibrium," Cambridge Books, Cambridge University Press, number 9780521388702, October.
    16. McKelvey, Richard D. & McLennan, Andrew, 1996. "Computation of equilibria in finite games," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 2, pages 87-142, Elsevier.
    17. Breton, Michele & Haurie, Alain & Filar, Jerzy A., 1986. "On the computation of equilibria in discounted stochastic dynamic games," Journal of Economic Dynamics and Control, Elsevier, vol. 10(1-2), pages 33-36, June.
    18. van den Elzen, Antoon & Talman, Dolf, 1999. "An Algorithmic Approach toward the Tracing Procedure for Bi-matrix Games," Games and Economic Behavior, Elsevier, vol. 28(1), pages 130-145, July.
    19. Herings P. Jean-Jacques & Peeters R., 1999. "A Differentiable Homotopy to Compute Nash Equilibria of n-Person Games," Research Memorandum 038, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    20. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    21. Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-1281, September.
    22. Richard Mckelvey & Thomas Palfrey, 1998. "Quantal Response Equilibria for Extensive Form Games," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 9-41, June.
    23. Andrew McLennan, 2005. "The Expected Number of Nash Equilibria of a Normal Form Game," Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
    24. Herbert E. Scarf, 1967. "The Approximation of Fixed Points of a Continuous Mapping," Cowles Foundation Discussion Papers 216R, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herings, P. J. J. & Polemarchakis, H., 2002. "Equilibrium and arbitrage in incomplete asset markets with fixed prices," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 133-155, April.
    2. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    3. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
    4. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    5. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    6. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    7. Herings,P. Jean-Jacques, 2000. "Universally Stable Adjustment Processes - A Unifying Approach -," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Stuart McDonald & Liam Wagner, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk & Uncertainty Working Papers WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
    9. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    10. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    11. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    12. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    13. Stuart McDonald & Liam Wagner, 2013. "A Stochastic Search Algorithm for the Computation of Perfect and Proper Equilibria," Discussion Papers Series 480, School of Economics, University of Queensland, Australia.
    14. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
    15. Jean-Jacques Herings, P., 2002. "Universally converging adjustment processes--a unifying approach," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 341-370, November.
    16. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
    17. Chen, Yin & Dang, Chuangyin, 2020. "An extension of quantal response equilibrium and determination of perfect equilibrium," Games and Economic Behavior, Elsevier, vol. 124(C), pages 659-670.
    18. P. Herings & Ronald Peeters, 2005. "A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games," Annals of Operations Research, Springer, vol. 137(1), pages 349-368, July.
    19. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    20. Wheatley, W. Parker, 2003. "Survival And Ownership Of Internet Marketplaces For Agriculture," 2003 Annual meeting, July 27-30, Montreal, Canada 22214, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2000031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.