IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/9f112346-b587-47f3-ad2e-6ce5ec9eb7d3.html
   My bibliography  Save this paper

Computing normal form perfect equilibria for extensive two-person games

Author

Listed:
  • von Stengel, B.
  • van den Elzen, A.H.
  • Talman, A.J.J.

    (Tilburg University, School of Economics and Management)

Abstract

This paper presents an algorithm for computing an equilibrium of an extensive two-person game with perfect recall. The method is computationally efficient by virtue of using the sequence form, whose size is proportional to the size of the game tree. The equilibrium is traced on a piecewise linear path in the sequence form strategy space from an arbitrary starting vector. If the starting vector represents a pair of completely mixed strategies, then the equilibrium is normal form perfect. Computational experiments compare the sequence form and the reduced normal form, and show that only the sequence form is tractable for larger games. Copyright The Econometric Society 2002.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 2002. "Computing normal form perfect equilibria for extensive two-person games," Other publications TiSEM 9f112346-b587-47f3-ad2e-6, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:9f112346-b587-47f3-ad2e-6ce5ec9eb7d3
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/455999/e.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dai, Y. & Talman, D., 1990. "Linear Stationary Point Problems On Unbounded Polyhedra," Papers 9067, Tilburg - Center for Economic Research.
    2. von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1996. "Tracing equilibria in extensive games by complementary pivoting," Other publications TiSEM 438ed645-c6be-469e-a7d9-7, Tilburg University, School of Economics and Management.
    3. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    4. von Stengel, Bernhard, 1996. "Efficient Computation of Behavior Strategies," Games and Economic Behavior, Elsevier, vol. 14(2), pages 220-246, June.
    5. Kamiya, K. & Talman, A.J.J., 1990. "Linear stationary point problems," Discussion Paper 1990-22, Tilburg University, Center for Economic Research.
    6. Gilboa, Itzhak & Zemel, Eitan, 1989. "Nash and correlated equilibria: Some complexity considerations," Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
    7. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    8. Koller, Daphne & Megiddo, Nimrod & von Stengel, Bernhard, 1996. "Efficient Computation of Equilibria for Extensive Two-Person Games," Games and Economic Behavior, Elsevier, vol. 14(2), pages 247-259, June.
    9. C. E. Lemke, 1965. "Bimatrix Equilibrium Points and Mathematical Programming," Management Science, INFORMS, vol. 11(7), pages 681-689, May.
    10. van den Elzen, A.H. & Talman, A.J.J., 1988. "A procedure for finding Nash equilibria in bi-matrix games," Research Memorandum FEW 334, Tilburg University, School of Economics and Management.
    11. McKelvey, Richard D. & McLennan, Andrew, 1996. "Computation of equilibria in finite games," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 2, pages 87-142, Elsevier.
    12. van den Elzen, Antoon & Talman, Dolf, 1999. "An Algorithmic Approach toward the Tracing Procedure for Bi-matrix Games," Games and Economic Behavior, Elsevier, vol. 28(1), pages 130-145, July.
    13. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
    14. Koller, Daphne & Megiddo, Nimrod, 1996. "Finding Mixed Strategies with Small Supports in Extensive Form Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 73-92.
    15. Robert Wilson, 1972. "Computing Equilibria of Two-Person Games from the Extensive Form," Management Science, INFORMS, vol. 18(7), pages 448-460, March.
    16. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    17. Wilson, Robert, 1992. "Computing Simply Stable Equilibria," Econometrica, Econometric Society, vol. 60(5), pages 1039-1070, September.
    18. Selten, Reinhard, 1988. "Evolutionary stability in extensive two-person games - correction and further development," Mathematical Social Sciences, Elsevier, vol. 16(3), pages 223-266, December.
    19. Yang Dai & Dolf Talman, 1993. "Linear Stationary Point Problems on Unbounded Polyhedra," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 635-644, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    2. Stuart McDonald & Liam Wagner, 2010. "The Computation of Perfect and Proper Equilibrium for Finite Games via Simulated Annealing," Risk & Uncertainty Working Papers WPR10_1, Risk and Sustainable Management Group, University of Queensland, revised Apr 2010.
    3. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
    4. Stuart McDonald & Liam Wagner, 2013. "A Stochastic Search Algorithm for the Computation of Perfect and Proper Equilibria," Discussion Papers Series 480, School of Economics, University of Queensland, Australia.
    5. F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    6. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
    7. Bernhard von Stengel & Françoise Forges, 2008. "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
    8. Yin Chen & Chuangyin Dang, 2019. "A Reformulation-Based Simplicial Homotopy Method for Approximating Perfect Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 877-891, October.
    9. Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
    10. Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
    11. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    12. Chen, Yin & Dang, Chuangyin, 2020. "An extension of quantal response equilibrium and determination of perfect equilibrium," Games and Economic Behavior, Elsevier, vol. 124(C), pages 659-670.
    13. Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
    14. Herings, P. J. J. & Polemarchakis, H., 2002. "Equilibrium and arbitrage in incomplete asset markets with fixed prices," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 133-155, April.
    15. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
    16. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    17. Rosenbaum, Janet, 2002. "The Computational Complexity of Nash Equilibria," SocArXiv h63mz, Center for Open Science.
    18. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    19. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
    20. Sung, Shao-Chin & Dimitrov, Dinko, 2010. "Computational complexity in additive hedonic games," European Journal of Operational Research, Elsevier, vol. 203(3), pages 635-639, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:9f112346-b587-47f3-ad2e-6ce5ec9eb7d3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.