IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.00529.html
   My bibliography  Save this paper

A Characterization of Nash Equilibrium in Behavioral Strategies through Local Sequential Rationality

Author

Listed:
  • Yiyin Cao
  • Chuangyin Dang

Abstract

The concept of Nash equilibrium in behavioral strategies (NashEBS) was formulated By Nash~\cite{Nash (1951)} for an extensive-form game through global rationality of nonconvex payoff functions. Kuhn's payoff equivalence theorem resolves the nonconvexity issue, but it overlooks that one Nash equilibrium of the associated normal-form game can correspond to infinitely many NashEBSs of an extensive-form game. To remedy this multiplicity, the traditional approach as documented in Myerson~\cite{Myerson (1991)} involves a two-step process: identifying a Nash equilibrium of the agent normal-form representation, followed by verifying whether the corresponding mixed strategy profile is a Nash equilibrium of the associated normal-form game, which often scales exponentially with the size of the extensive-form game tree. In response to these challenges, this paper develops a characterization of NashEBS through the incorporation of an extra behavioral strategy profile and beliefs, which meet local sequential rationality of linear payoff functions and self-independent consistency. This characterization allows one to analytically determine all NashEBSs for small extensive-form games. Building upon this characterization, we acquire a polynomial system serving as a necessary and sufficient condition for determining whether a behavioral strategy profile is a NashEBS. An application of the characterization yields differentiable path-following methods for computing such an equilibrium.

Suggested Citation

  • Yiyin Cao & Chuangyin Dang, 2025. "A Characterization of Nash Equilibrium in Behavioral Strategies through Local Sequential Rationality," Papers 2504.00529, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2504.00529
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.00529
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elchanan Ben-Porath, 1997. "Rationality, Nash Equilibrium and Backwards Induction in Perfect-Information Games," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(1), pages 23-46.
    2. Fudenberg, Drew & Tirole, Jean, 1991. "Perfect Bayesian equilibrium and sequential equilibrium," Journal of Economic Theory, Elsevier, vol. 53(2), pages 236-260, April.
    3. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, December.
    4. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    5. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    6. Robert Wilson, 1972. "Computing Equilibria of Two-Person Games from the Extensive Form," Management Science, INFORMS, vol. 18(7), pages 448-460, March.
    7. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    8. P. Jean-Jacques Herings, 2000. "Two simple proofs of the feasibility of the linear tracing procedure," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(2), pages 485-490.
    9. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, Decembrie.
    10. von Stengel, Bernhard, 1996. "Efficient Computation of Behavior Strategies," Games and Economic Behavior, Elsevier, vol. 14(2), pages 220-246, June.
    11. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    12. Reny, Philip J, 1992. "Backward Induction, Normal Form Perfection and Explicable Equilibria," Econometrica, Econometric Society, vol. 60(3), pages 627-649, May.
    13. Battigalli, Pierpaolo, 1996. "Strategic Independence and Perfect Bayesian Equilibria," Journal of Economic Theory, Elsevier, vol. 70(1), pages 201-234, July.
    14. Myerson, Roger B, 1986. "Multistage Games with Communication," Econometrica, Econometric Society, vol. 54(2), pages 323-358, March.
    15. P. Jean-Jacques Herings & Ronald J.A.P. Peeters, 2001. "symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(1), pages 159-185.
    16. Koller, Daphne & Megiddo, Nimrod, 1992. "The complexity of two-person zero-sum games in extensive form," Games and Economic Behavior, Elsevier, vol. 4(4), pages 528-552, October.
    17. Koller, Daphne & Megiddo, Nimrod & von Stengel, Bernhard, 1996. "Efficient Computation of Equilibria for Extensive Two-Person Games," Games and Economic Behavior, Elsevier, vol. 14(2), pages 247-259, June.
    18. Eaves, B. Curtis & Schmedders, Karl, 1999. "General equilibrium models and homotopy methods," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1249-1279, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
    2. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
    3. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Battigalli, P. & Catonini, E. & Manili, J., 2023. "Belief change, rationality, and strategic reasoning in sequential games," Games and Economic Behavior, Elsevier, vol. 142(C), pages 527-551.
    5. Carlos Pimienta, 2011. "Weakly-Bayesian and Consistent Assessments," Discussion Papers 2012-02, School of Economics, The University of New South Wales.
    6. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    7. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
    8. Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
    9. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    10. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
    11. Battigalli, Pierpaolo & Leonetti, Paolo & Maccheroni, Fabio, 2020. "Behavioral equivalence of extensive game structures," Games and Economic Behavior, Elsevier, vol. 121(C), pages 533-547.
    12. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    13. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
    14. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
    15. Guarino, Pierfrancesco, 2020. "An epistemic analysis of dynamic games with unawareness," Games and Economic Behavior, Elsevier, vol. 120(C), pages 257-288.
    16. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2007. "Interactive epistemology in games with payoff uncertainty," Research in Economics, Elsevier, vol. 61(4), pages 165-184, December.
    17. Shimoji, Makoto & Watson, Joel, 1998. "Conditional Dominance, Rationalizability, and Game Forms," Journal of Economic Theory, Elsevier, vol. 83(2), pages 161-195, December.
    18. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    19. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2009. "The Refined Best-Response Correspondence and Backward Induction," Levine's Working Paper Archive 814577000000000248, David K. Levine.
    20. Carlos Pimienta, 2014. "Bayesian and consistent assessments," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(3), pages 601-617, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.00529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.