IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

The Expected Number of Nash Equilibria of a Normal Form Game

  • Andrew McLennan

Fix finite pure strategy sets S1 , … , Sn , and let S= S1 ×⋯× Sn . In our model of a random game the agents' payoffs are statistically independent, with each agent's payoff uniformly distributed on the unit sphere in R -super-S. For given nonempty T1 ⊂ S1 , … , Tn ⊂ Sn we give a computationally implementable formula for the mean number of Nash equilibria in which each agent i's mixed strategy has support T i. The formula is the product of two expressions. The first is the expected number of totally mixed equilibria for the truncated game obtained by eliminating pure strategies outside the sets T i. The second may be construed as the "probability" that such an equilibrium remains an equilibrium when the strategies in the sets Si ∖ Ti become available. Copyright The Econometric Society 2005.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1111/j.1468-0262.2005.00567.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 73 (2005)
Issue (Month): 1 (01)
Pages: 141-174

as
in new window

Handle: RePEc:ecm:emetrp:v:73:y:2005:i:1:p:141-174
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/
Email:


More information through EDIRC

Order Information: Web: https://www.econometricsociety.org/publications/econometrica/access/ordering-back-issues Email:


No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:73:y:2005:i:1:p:141-174. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.