IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v69y2001i5p1261-81.html
   My bibliography  Save this article

Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality

Author

Listed:
  • Pakes, Ariel
  • McGuire, Paul

Abstract

This paper introduces a stochastic algorithm for computing symmetric Markov perfect equilibria. The algorithm computes equilibrium policy and value functions, and generates a transition kernel for the (stochastic) evolution of the state of the system. It has two features that together imply that it need not be subject to the curse of dimensionality. First, the integral that determines continuation values is never calculated; rather it is approximated by a simple average of returns from past outcomes of the algorithm, an approximation whose computational burden is not tied to the dimension of the state space. Second, iterations of the algorithm update value and policy functions at a single (rather than at all possible) points in the state space. Random draws from a distribution set by the updated policies determine the location of the next iteration's updates. This selection only repeatedly hits the recurrent class of points, a subset whose cardinality is not directly tied to that of the state space. Numerical results for industrial organization problems show that our algorithm can increase speed and decrease memory requirements by several orders of magnitude.

Suggested Citation

  • Pakes, Ariel & McGuire, Paul, 2001. "Stochastic Algorithms, Symmetric Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Econometrica, Econometric Society, vol. 69(5), pages 1261-1281, September.
  • Handle: RePEc:ecm:emetrp:v:69:y:2001:i:5:p:1261-81
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:69:y:2001:i:5:p:1261-81. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.