IDEAS home Printed from https://ideas.repec.org/h/eee/indchp/3-30.html
   My bibliography  Save this book chapter

A Framework for Applied Dynamic Analysis in IO

In: Handbook of Industrial Organization

Author

Listed:
  • Doraszelski, Ulrich
  • Pakes, Ariel

Abstract

This paper reviews a framework for numerically analyzing dynamic interactions in imperfectly competitive industries. The framework dates back to Ericson and Pakes [1995. Review of Economic Studies 62, 53-82], but it is based on equilibrium notions that had been available for some time before, and it has been extended in many ways by different authors since. The framework requires as input a set of primitives which describe the institutional structure in the industry to be analyzed. The framework outputs profits and policies for every incumbent and potential entrant at each possible state of the industry. These policies can be used to simulate the distribution of sample paths for all firms from any initial industry structure. The sample paths generated by the model can be quite different depending on the primitives, and most of the extensions were designed to enable the framework to accommodate empirically relevant cases that required modification of the initial structure. The sample paths possess similar properties to those observed in (the recently available) panel data sets on industries. These sample paths can be used either for an analysis of the likely response to a policy or an environmental change, or as the model's implication in an estimation algorithm. We begin with a review of an elementary version of the framework and a report on what is known about its analytic properties. Much of the rest of the paper deals with computational issues. We start with an introduction to iterative techniques for computing equilibrium that are analogous to the techniques used to compute the solution to single agent dynamic programming problems. This includes discussions of the determinants of the computational burden of these techniques, and the mechanism implicitly used to select an equilibrium when multiple equilibria are possible. We then outline a number of techniques that might be used to reduce the computational burden of the iterative algorithm. This section includes discussions of both the implications of differences in modeling assumptions used in the alternative techniques, and a discussion of the likely relevance of the different techniques for different institutional structures. A separate section reports on a technique for computing multiple equilibria from the same set of primitives. The paper concludes with a review of applications of the framework and a brief discussion of areas where further development of the framework would seem warranted.

Suggested Citation

  • Doraszelski, Ulrich & Pakes, Ariel, 2007. "A Framework for Applied Dynamic Analysis in IO," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 30, pages 1887-1966, Elsevier.
  • Handle: RePEc:eee:indchp:3-30
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B7P5S-4PKFGN7-8/2/9c3223520f4de6533fb6986268a9f71e
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maskin, Eric & Tirole, Jean, 1987. "A theory of dynamic oligopoly, III : Cournot competition," European Economic Review, Elsevier, vol. 31(4), pages 947-968, June.
    2. Kwang-Soo Cheong, "undated". "Mergers and Dynamic Oligopoly," Computing in Economics and Finance 1997 126, Society for Computational Economics.
    3. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," Review of Economic Studies, Oxford University Press, vol. 62(1), pages 53-82.
    4. Kenneth L. Judd & Sevin Yeltekin & James Conklin, 2003. "Computing Supergame Equilibria," Econometrica, Econometric Society, vol. 71(4), pages 1239-1254, July.
    5. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles," Econometrica, Econometric Society, vol. 56(3), pages 571-599, May.
    6. Cabral, Luis M B & Riordan, Michael H, 1994. "The Learning Curve, Market Dominance, and Predatory Pricing," Econometrica, Econometric Society, vol. 62(5), pages 1115-1140, September.
    7. Harald Uhlig & Martin Lettau, 1999. "Rules of Thumb versus Dynamic Programming," American Economic Review, American Economic Association, vol. 89(1), pages 148-174, March.
    8. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
    9. C. Lanier Benkard, 2000. "Learning and Forgetting: The Dynamics of Aircraft Production," American Economic Review, American Economic Association, vol. 90(4), pages 1034-1054, September.
    10. Jofre-Bonet, Mireia & Pesendorfer, Martin, 2000. "Bidding behavior in a repeated procurement auction: A summary," European Economic Review, Elsevier, vol. 44(4-6), pages 1006-1020, May.
    11. Gautam Gowrisankaran & Robert J. Town, 1997. "Dynamic Equilibrium in the Hospital Industry," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 6(1), pages 45-74, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun, Byoung & Vives, Xavier, 2001. "Incentives in Dynamic Duopoly," CEPR Discussion Papers 2899, C.E.P.R. Discussion Papers.
    2. C. Lanier Benkard, 2000. "A Dynamic Analysis of the Market for Wide-Bodied Commercial Aircraft," NBER Working Papers 7710, National Bureau of Economic Research, Inc.
    3. Ulrich Doraszelski & Mark Satterthwaite, 2010. "Computable Markov‐perfect industry dynamics," RAND Journal of Economics, RAND Corporation, vol. 41(2), pages 215-243, June.
    4. Aguirregabiria, Victor & Nevo, Aviv, 2010. "Recent developments in empirical IO: dynamic demand and dynamic games," MPRA Paper 27814, University Library of Munich, Germany.
    5. Sebastian Kranz, 2012. "Discounted Stochastic Games with Voluntary Transfers," Levine's Working Paper Archive 786969000000000423, David K. Levine.
    6. Chen, Yongmin & Rosenthal, Robert W., 1996. "Dynamic duopoly with slowly changing customer loyalties," International Journal of Industrial Organization, Elsevier, vol. 14(3), pages 269-296, May.
    7. David Greenstreet, 2007. "Exploiting Sequential Learning to Estimate Establishment-Level Productivity Dynamics and Decision Rules," Economics Series Working Papers 345, University of Oxford, Department of Economics.
    8. Ulrich Doraszelski & Kenneth L. Judd, 2019. "Dynamic stochastic games with random moves," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 59-79, March.
    9. David Besanko & Ulrich Doraszelski, 2005. "Learning-by-Doing, Organizational Forgetting, and Industry Dynanmics," Computing in Economics and Finance 2005 236, Society for Computational Economics.
    10. Linli Xu & Jorge M. Silva-Risso & Kenneth C. Wilbur, 2018. "Dynamic Quality Ladder Model Predictions in Nonrandom Holdout Samples," Management Science, INFORMS, vol. 64(7), pages 3187-3207, July.
    11. Drew Fudenberg, 2015. "Tirole's Industrial Regulation and Organization Legacy in Economics," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(3), pages 771-800, July.
    12. Doraszelski, Ulrich & Satterthwaite, Mark, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," CEPR Discussion Papers 6212, C.E.P.R. Discussion Papers.
    13. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2008. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," GSIA Working Papers 2009-E22, Carnegie Mellon University, Tepper School of Business.
    14. Ulrich Doraszelski & Mark Satterthwaite, 2007. "Computable Markov-Perfect Industry Dynamics: Existence, Purification, and Multiplicity," Levine's Bibliography 321307000000000912, UCLA Department of Economics.
    15. Committee, Nobel Prize, 2014. "Market power and regulation (scientific background)," Nobel Prize in Economics documents 2014-2, Nobel Prize Committee.
    16. Cai,Yongyang & Selod,Harris & Steinbuks,Jevgenijs, 2015. "Urbanization and property rights," Policy Research Working Paper Series 7486, The World Bank.
    17. Alexander Steinmetz, 2008. "Competition, Innovation and the Effect of Knowledge Accumulation," Working Papers 053, Bavarian Graduate Program in Economics (BGPE).
    18. Thompson, Peter, 2010. "Learning by Doing," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 429-476, Elsevier.
    19. David Besanko & Ulrich Doraszelski & Yaroslav Kryukov & Mark Satterthwaite, 2007. "Learning-by-Doing, Organizational Forgetting, and Industry Dynamics," Levine's Bibliography 321307000000000903, UCLA Department of Economics.
    20. Doraszelski, Ulrich & Escobar, Juan F., 2012. "Restricted feedback in long term relationships," Journal of Economic Theory, Elsevier, vol. 147(1), pages 142-161.

    More about this item

    Keywords

    industrial organization;

    JEL classification:

    • L0 - Industrial Organization - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:indchp:3-30. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.