IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3428.html

A "Pencil-Sharpening" Algorithm for Two Player Stochastic Games with Perfect Monitoring

Author

Listed:
  • Abreu, Dilip

    (Princeton University)

  • Brooks, Benjamin

    (University of Chicago)

  • Sannikov, Yuliy

    (Princeton University)

Abstract

We study the subgame perfect equilibria of two player stochastic games with perfect monitoring and geometric discounting. A novel algorithm is developed for calculating the discounted payoffs that can be attained in equilibrium. This algorithm generates a sequence of tuples of payoffs vectors, one payoff for each state, that move around the equilibrium payoff sets in a clockwise manner. The trajectory of these "pivot" payoffs asymptotically traces the boundary of the equilibrium payoff correspondence. We also provide an implementation of our algorithm, and preliminary simulations indicate that it is more efficient than existing methods. The theoretical results that underlie the algorithm also yield a bound on the number of extremal equilibrium payoffs.

Suggested Citation

  • Abreu, Dilip & Brooks, Benjamin & Sannikov, Yuliy, 2016. "A "Pencil-Sharpening" Algorithm for Two Player Stochastic Games with Perfect Monitoring," Research Papers 3428, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3428
    as

    Download full text from publisher

    File URL: http://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/417951
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Āzacis, Helmuts & Vida, Péter, 2019. "Repeated implementation: A practical characterization," Journal of Economic Theory, Elsevier, vol. 180(C), pages 336-367.
    2. Suehyun Kwon, 2019. "Dynamic IC and dynamic programming," CESifo Working Paper Series 7564, CESifo.
    3. Jose Miguel Abito & Cuicui Chen, 2021. "How much can we identify from repeated games?," Economics Bulletin, AccessEcon, vol. 41(3), pages 1212-1222.
    4. Susanne Goldlücke & Sebastian Kranz, 2018. "Discounted stochastic games with voluntary transfers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(1), pages 235-263, July.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.