IDEAS home Printed from https://ideas.repec.org/p/iza/izasps/sp17.html
   My bibliography  Save this paper

Googlemetrie und Arbeitsmarkt in der Wirtschaftskrise

Author

Listed:
  • Askitas, Nikos

    (IZA)

  • Zimmermann, Klaus F.

    (University of Bonn)

Abstract

Die große Wirtschaftskrise hat bisher nur verhaltene Spuren am Arbeitsmarkt hinterlassen. Angesichts der unsicheren weiteren konjunkturellen Entwicklung, der schlechten Auslastung der Arbeitskräfte in den Unternehmen und der hohen Kurzarbeit erwarten viele Beobachter zum Herbst einen dramatischen Anstieg der Arbeitslosigkeit mit einer baldigen Überschreitung der Vier-Millionen-Grenze. Nach Prognosen unter Verwendung von Google-Internetzugriffsstatistiken bleibt es aber im Vorfeld der Bundestagswahlen in den Sommermonaten August und September aller Voraussicht nach völlig ruhig. Saisonal bedingt geht die Arbeitslosigkeit sogar zurück. Damit verringert sich die Gefahr, dass eine Arbeitslosenzahl von vier Millionen noch in diesem Jahr erreicht werden wird.

Suggested Citation

  • Askitas, Nikos & Zimmermann, Klaus F., 2009. "Googlemetrie und Arbeitsmarkt in der Wirtschaftskrise," IZA Standpunkte 17, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izasps:sp17
    as

    Download full text from publisher

    File URL: https://docs.iza.org/sp17.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zimmermann, Klaus F., 2009. "Prognosekrise: Warum weniger manchmal mehr ist," IZA Standpunkte 4, Institute of Labor Economics (IZA).
    2. Amelie Constant & Klaus F. Zimmermann, 2008. "Im Angesicht der Krise: US-Präsidentschaftswahlen in transnationaler Sicht," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 75(44), pages 688-701.
    3. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    4. Nikos Askitas & Klaus F. Zimmermann, 2009. "Prognosen aus dem Internet: weitere Erholung am Arbeitsmarkt erwartet," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(25), pages 402-408.
    5. Nikos Askitas & Klaus Zimmermann, 2009. "Googlemetrie und Arbeitsmarkt," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 89(7), pages 489-496, July.
    6. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    7. Christian Dreger & Patricia Alvarez-Plata & Kerstin Bernoth & Karl Brenke & Stefan Kooths & Vladimir Kuzin & Jörg Weber & Sebastian Weber & Florian Zinsmeister, 2009. "Tendenzen der Wirtschaftsentwicklung 2009/2010," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(31), pages 490-529.
    8. Konstantin A. Kholodilin & Boriss Siliverstovs, 2009. "Geben Konjunkturprognosen eine gute Orientierung?," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(13), pages 207-213.
    9. Karl Brenke & Christian Dreger & Stefan Kooths & Vladimir Kuzin & Sebastian Weber & Florian Zinsmeister, 2009. "Grundlinien der Wirtschaftsentwicklung 2009/2010," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(1/2), pages 2-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simionescu, Mihaela & Raišienė, Agota Giedrė, 2021. "A bridge between sentiment indicators: What does Google Trends tell us about COVID-19 pandemic and employment expectations in the EU new member states?," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Mihaela Simionescu & Dalia Streimikiene & Wadim Strielkowski, 2020. "What Does Google Trends Tell Us about the Impact of Brexit on the Unemployment Rate in the UK?," Sustainability, MDPI, vol. 12(3), pages 1-10, January.
    3. Mihaela, Simionescu, 2020. "Improving unemployment rate forecasts at regional level in Romania using Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    4. Jan Goebel & Christian Krekel & Tim Tiefenbach & Nicholas R. Ziebarth, 2014. "Natural Disaster, Environmental Concerns, Well-Being and Policy Action," CINCH Working Paper Series 1405, Universitaet Duisburg-Essen, Competent in Competition and Health.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikos Askitas & Klaus F. Zimmermann, 2009. "Prognosen aus dem Internet: weitere Erholung am Arbeitsmarkt erwartet," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 76(25), pages 402-408.
    2. Fabo, B., 2017. "Towards an understanding of job matching using web data," Other publications TiSEM b8b877f2-ae6a-495f-b6cc-9, Tilburg University, School of Economics and Management.
    3. Karolien Lenaerts & Miroslav Beblavý & Brian Fabo, 2016. "Prospects for utilisation of non-vacancy Internet data in labour market analysis—an overview," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 5(1), pages 1-18, December.
    4. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    5. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    6. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 683-687.
    7. D'Amuri, Francesco & Marcucci, Juri, 2009. "'Google it!' Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    8. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    9. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing, vol. 36(1), pages 2-12, April.
    10. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    11. Jianchun Fang & Wanshan Wu & Zhou Lu & Eunho Cho, 2019. "Using Baidu Index To Nowcast Mobile Phone Sales In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 64(01), pages 83-96, March.
    12. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    13. Cedric Mbanga & Ali F. Darrat & Jung Chul Park, 2019. "Investor sentiment and aggregate stock returns: the role of investor attention," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 397-428, August.
    14. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    15. Heather R. Tierney & Bing Pan, 2012. "A poisson regression examination of the relationship between website traffic and search engine queries," Netnomics, Springer, vol. 13(3), pages 155-189, October.
    16. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
    17. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    18. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    19. Eli Arditi & Eldad Yechiam & Gal Zahavi, 2015. "Association between Stock Market Gains and Losses and Google Searches," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-12, October.
    20. Kholodilin, Konstantin A. & Siliverstovs, Boriss, 2012. "Measuring regional inequality by internet car price advertisements: Evidence for Germany," Economics Letters, Elsevier, vol. 116(3), pages 414-417.

    More about this item

    Keywords

    Evaluation; Prognosen; Arbeitslosigkeit; Schlüsselworte; Suchmaschinen; Internet; Google;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izasps:sp17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.