IDEAS home Printed from https://ideas.repec.org/p/eui/euiwps/eco2012-19.html
   My bibliography  Save this paper

Granger-causal analysis of VARMA-GARCH models

Author

Listed:
  • Tomasz Wozniak

Abstract

Recent economic developments have shown the importance of spillover and contagion effects in financial markets. Such effects are not limited to relations between the levels of financial variables but also impact on their volatility. I investigate Granger causality in conditional mean and conditional variances of time series. For this purpose a VARMA-GARCH model is used. I derive parametric restrictions for the hypothesis of noncausality in conditional variances between two groups of variables, when there are other variables in the system as well. These novel conditions are convenient for the analysis of potentially large systems of economic variables. Such systems should be considered in order to avoid the problem of omitted variable bias. Further, I propose a Bayesian Lindley-type testing procedure in order to evaluate hypotheses of noncausality. It avoids the singularity problem that may appear in the Wald test. Also, it relaxes the assumption of the existence of higher-order moments of the residuals required for the derivation of asymptotic results of the classical tests. In the empirical example, I find that the dollar-to-Euro exchange rate does not second-order cause the pound-to-Euro exchange rate, in the system of variables containing also the Swiss frank-to-Euro exchange rate, which confirms the meteor shower hypothesis of Engle, Ito & Lin (1990).

Suggested Citation

  • Tomasz Wozniak, 2012. "Granger-causal analysis of VARMA-GARCH models," Economics Working Papers ECO2012/19, European University Institute.
  • Handle: RePEc:eui:euiwps:eco2012/19
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/bitstream/handle/1814/23336/ECO_2012_19.pdf?sequence=1
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    4. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    5. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    6. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    7. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    8. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    9. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    10. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    11. Z. Lomnicki, 1961. "Tests for departure from normality in the case of linear stochastic processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 4(1), pages 37-62, December.
    12. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
    13. Lutkepohl, Helmut, 1982. "Non-causality due to omitted variables," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 367-378, August.
    14. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    15. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    16. Mark P. Taylor, 1995. "The Economics of Exchange Rates," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 13-47, March.
    17. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    18. He, Changli & Ter svirta, Timo, 2004. "An Extended Constant Conditional Correlation Garch Model And Its Fourth-Moment Structure," Econometric Theory, Cambridge University Press, vol. 20(05), pages 904-926, October.
    19. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(03), pages 838-862, June.
    20. Deschamps, Philippe J., 2006. "A flexible prior distribution for Markov switching autoregressions with Student-t errors," Journal of Econometrics, Elsevier, vol. 133(1), pages 153-190, July.
    21. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    22. Anna Pajor, 2011. "A Bayesian Analysis of Exogeneity in Models with Latent Variables," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 3(2), pages 49-73, June.
    23. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    24. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
    25. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    26. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    27. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    28. Matthieu Droumaguet & Tomasz Wozniak, 2012. "Bayesian Testing of Granger Causality in Markov-Switching VARs," Economics Working Papers ECO2012/06, European University Institute.
    29. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
    30. repec:adr:anecst:y:2008:i:89:p:08 is not listed on IDEAS
    31. Andrew Worthington & Helen Higgs, 2004. "Transmission of equity returns and volatility in Asian developed and emerging markets: a multivariate GARCH analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 71-80.
    32. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
    33. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    34. Christian M. Hafner, 2009. "Causality and forecasting in temporally aggregated multivariate GARCH processes," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 127-146, March.
    35. Florens, Jean-Pierre & Mouchart, Michel, 1985. "A Linear Theory for Noncausality," Econometrica, Econometric Society, vol. 53(1), pages 157-175, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Some Recent Papers on Granger Causality
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2012-12-03 00:30:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    2. Matthieu Droumaguet & Tomasz Wozniak, 2012. "Bayesian Testing of Granger Causality in Markov-Switching VARs," Economics Working Papers ECO2012/06, European University Institute.

    More about this item

    Keywords

    Granger causality; second-order noncausality; VARMA-GARCH models; Bayesian testing;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco2012/19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Valerio). General contact details of provider: http://edirc.repec.org/data/deiueit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.