IDEAS home Printed from
   My bibliography  Save this article

Positivity constraints on the conditional variances in the family of conditional correlation GARCH models


  • Nakatani, Tomoaki
  • Teräsvirta, Timo


In this article, we derive a set of necessary and sufficient conditions for positivity of the vector conditional variance equation in multivariate GARCH models with explicit modelling of conditional correlation. These models include the constant conditional correlation GARCH model of Bollerslev [1990. Review of Economics and Statistics 72, 498-505] and its extensions. Under the new conditions, it is possible to introduce negative volatility spillovers in the model. An empirical example illustrates usefulness of having such conditions in practice.

Suggested Citation

  • Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
  • Handle: RePEc:eee:finlet:v:5:y:2008:i:2:p:88-95

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    2. Tsai, Henghsiu & Chan, Kung-Sik, 2008. "A Note On Inequality Constraints In The Garch Model," Econometric Theory, Cambridge University Press, vol. 24(03), pages 823-828, June.
    3. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-235, April.
    4. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    7. Kawakatsu, Hiroyuki, 2006. "Matrix exponential GARCH," Journal of Econometrics, Elsevier, vol. 134(1), pages 95-128, September.
    8. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    9. He, Changli & Teräsvirta, Timo, 2002. "An application of the analogy between vector ARCH and vector random coefficient autoregressive models," SSE/EFI Working Paper Series in Economics and Finance 516, Stockholm School of Economics.
    10. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    11. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    12. C. Gourieroux, 2007. "Positivity Conditions for a Bivariate Autoregressive Volatility Specification," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(4), pages 624-636, Fall.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Haas, Markus, 2010. "Covariance forecasts and long-run correlations in a Markov-switching model for dynamic correlations," Finance Research Letters, Elsevier, vol. 7(2), pages 86-97, June.
    2. Tomasz Wozniak, 2015. "Granger-causal analysis of GARCH models: a Bayesian approach," Department of Economics - Working Papers Series 1194, The University of Melbourne.
    3. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    4. Karanasos, Menelaos & Xu, Yongdeng, 2017. "Matrix Inequality Constraints for Vector (Asymmetric Power) GARCH/HEAVY Models and MEM with spillovers: some New (Mixture) Formulations," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    5. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    6. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    7. Conrad, Christian & Weber, Enzo, 2013. "Measuring Persistence in Volatility Spillovers," Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79850, Verein für Socialpolitik / German Economic Association.
    8. Carnero M. Angeles & Eratalay M. Hakan, 2014. "Estimating VAR-MGARCH models in multiple steps," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 1-27, May.
    9. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    10. Tomasz Wozniak, 2012. "Granger-causal analysis of VARMA-GARCH models," Economics Working Papers ECO2012/19, European University Institute.
    11. repec:dau:papers:123456789/6804 is not listed on IDEAS
    12. Christian Conrad & Menelaos Karanasos, 2008. "Modeling Volatility Spillovers between the Variabilities of US Inflation and Output: the UECCC GARCH Model," Working Papers 0475, University of Heidelberg, Department of Economics, revised Sep 2008.
    13. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
    14. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G19 - Financial Economics - - General Financial Markets - - - Other


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:5:y:2008:i:2:p:88-95. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.