IDEAS home Printed from https://ideas.repec.org/p/bay/rdwiwi/28043.html
   My bibliography  Save this paper

Measuring Persistence in Volatility Spillovers

Author

Listed:
  • Conrad, Christian
  • Weber, Enzo

Abstract

This paper analyzes volatility spillovers in multivariate GARCH-type models. We show that the cross-effects between the conditional variances determine the persistence of the transmitted volatility innovations. In particular, the effect of a foreign volatility innovation on a conditional variance is even more persistent than the effect of an own innovation unless it is offset by an accompanying negative variance spillover of sufficient size. Moreover, ignoring a negative variance spillover causes a downward bias in the estimate of the initial impact of the foreign volatility innovation. Applying the concept to portfolios of small and large firms, we find that shocks to small firm returns affect the large firm conditional variance once we allow for (negative) spillovers between the conditional variances themselves.

Suggested Citation

  • Conrad, Christian & Weber, Enzo, 2013. "Measuring Persistence in Volatility Spillovers," University of Regensburg Working Papers in Business, Economics and Management Information Systems 473, University of Regensburg, Department of Economics.
  • Handle: RePEc:bay:rdwiwi:28043
    as

    Download full text from publisher

    File URL: https://epub.uni-regensburg.de/28043/1/ConradWeber.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ross, Stephen A, 1989. " Information and Volatility: The No-Arbitrage Martingale Approach to Timing and Resolution Irrelevancy," Journal of Finance, American Finance Association, vol. 44(1), pages 1-17, March.
    2. Nakatani, Tomoaki & Teräsvirta, Timo, 2008. "Positivity constraints on the conditional variances in the family of conditional correlation GARCH models," Finance Research Letters, Elsevier, vol. 5(2), pages 88-95, June.
    3. Enzo Weber, 2010. "Structural Conditional Correlation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(3), pages 392-407, Summer.
    4. Abdul Hakim & Michael McAleer, 2010. "Modelling the interactions across international stock, bond and foreign exchange markets," Applied Economics, Taylor & Francis Journals, vol. 42(7), pages 825-850.
    5. El Hedi Arouri, Mohamed & Jouini, Jamel & Nguyen, Duc Khuong, 2011. "Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management," Journal of International Money and Finance, Elsevier, vol. 30(7), pages 1387-1405.
    6. Patricia Chelley-Steeley & James Steeley, 2005. "The leverage effect in the UK stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 15(6), pages 409-423.
    7. Conrad, Jennifer & Gultekin, Mustafa N & Kaul, Gautam, 1991. "Asymmetric Predictability of Conditional Variances," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 597-622.
    8. Enzo Weber, 2010. "Volatility and causality in Asia Pacific financial markets," Applied Financial Economics, Taylor & Francis Journals, vol. 20(16), pages 1269-1292.
    9. Christos Savva & Denise Osborn & Len Gill, 2009. "Spillovers and correlations between US and major European stock markets: the role of the euro," Applied Financial Economics, Taylor & Francis Journals, vol. 19(19), pages 1595-1604.
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Tsai, Henghsiu & Chan, Kung-Sik, 2008. "A Note On Inequality Constraints In The Garch Model," Econometric Theory, Cambridge University Press, vol. 24(03), pages 823-828, June.
    12. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    13. Conrad, Christian & Karanasos, Menelaos, 2006. "The impulse response function of the long memory GARCH process," Economics Letters, Elsevier, vol. 90(1), pages 34-41, January.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. Conrad, Christian & Karanasos, Menelaos, 2010. "Negative Volatility Spillovers In The Unrestricted Eccc-Garch Model," Econometric Theory, Cambridge University Press, vol. 26(03), pages 838-862, June.
    16. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    17. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    18. Francq, Christian & Zakoïan, Jean-Michel, 2012. "Qml Estimation Of A Class Of Multivariate Asymmetric Garch Models," Econometric Theory, Cambridge University Press, vol. 28(01), pages 179-206, February.
    19. He, Changli & Ter svirta, Timo, 2004. "An Extended Constant Conditional Correlation Garch Model And Its Fourth-Moment Structure," Econometric Theory, Cambridge University Press, vol. 20(05), pages 904-926, October.
    20. Michael Mcaleer & Bernardo da Veiga, 2008. "Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 1-19.
    21. Heung Wong & W. Li & Shiqing Ling, 2005. "Joint modeling of cointegration and conditional heteroscedasticity with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 83-103, March.
    22. N. T. Laopodis, 2003. "Stochastic behaviour of Deutsche mark exchange rates within EMS," Applied Financial Economics, Taylor & Francis Journals, vol. 13(9), pages 665-676.
    23. Rittler, Daniel, 2012. "Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 774-785.
    24. Skintzi, Vasiliki D. & Refenes, Apostolos N., 2006. "Volatility spillovers and dynamic correlation in European bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(1), pages 23-40, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karanasos, Menelaos & Paraskevopoulos, Alexandros G. & Menla Ali, Faek & Karoglou, Michail & Yfanti, Stavroula, 2014. "Modelling stock volatilities during financial crises: A time varying coefficient approach," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 113-128.
    2. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    3. Francq, Christian & Sucarrat, Genaro, 2015. "Equation-by-Equation Estimation of a Multivariate Log-GARCH-X Model of Financial Returns," MPRA Paper 67140, University Library of Munich, Germany.
    4. Eraslan, Sercan & Ali, Faek Menla, 2017. "Financial crises and the dynamic linkages between stock and bond returns," Discussion Papers 17/2017, Deutsche Bundesbank.

    More about this item

    Keywords

    Multivariate GARCH; spillover; persistence; small and large firms;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bay:rdwiwi:28043. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gernot Deinzer). General contact details of provider: http://edirc.repec.org/data/wfregde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.