IDEAS home Printed from https://ideas.repec.org/p/erg/wpaper/508.html
   My bibliography  Save this paper

Optimization of Agricultural Water Use and Trade Patterns: The Case of Iran

Author

Listed:
  • G. R. Soltani

    (Department of Agricultural Economics, College of Agriculture, Shiraz University)

  • M. Bakhshoodeh

    (Department of Agricultural Economics, University of Shiraz)

  • M. Zibaei

Abstract

This study addresses the problem of agricultural water use efficiency via optimization of cropping patterns, irrigation strategies and external trade of agricultural products in Iran. Towards this end, comparative advantages of some principal crops are first determined using Policy Analysis Matrix (PAM) at three levels- farm, plain and basin. Due to importance of irrigation water, a new approach is developed for estimating scarcity price or the social price of irrigation water in the selected regions. Then, optimal cropping patterns at basin and farm levels are determined using mathematical programming techniques and considering water supply risk. According to the findings of this study, optimal allocation of water at the farm level is achieved when marginal return to irrigation water is the same not only in all growing stages of a crop but also at different growing stages of competing crops grown in the farm. Finally, the findings indicated that it is possible to direct optimal cropping patterns at basin level to maximize social profits, water-use efficiency and net virtual water import simultaneously. However, in order to draw a definite conclusion with respect to virtual water trade, more data is needed on the quantity of water embedded in each crop imported from and exported to each country. Moreover, it is necessary to design a suitable agricultural external trade plan to be used as a target for directing cropping patterns. The approach used in this study can be considered a first step in this direction.

Suggested Citation

  • G. R. Soltani & M. Bakhshoodeh & M. Zibaei, 2009. "Optimization of Agricultural Water Use and Trade Patterns: The Case of Iran," Working Papers 508, Economic Research Forum, revised Dec 2009.
  • Handle: RePEc:erg:wpaper:508
    as

    Download full text from publisher

    File URL: http://erf.org.eg/wp-content/uploads/2014/08/508.pdf
    Download Restriction: no

    File URL: http://bit.ly/2n6X5cO
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Ximing & McKinney, Daene C. & Rosegrant, Mark W., 2003. "Sustainability analysis for irrigation water management in the Aral Sea region," Agricultural Systems, Elsevier, vol. 76(3), pages 1043-1066, June.
    2. Diao, Xinshen & Roe, Terry & Doukkali, Rachid, 2002. "Economy-wide benefits from establishing water user-right markets in a spatially heterogeneous agricultural economy," TMD discussion papers 103, International Food Policy Research Institute (IFPRI).
    3. Shujie Yao, 1997. "Comparative Advantages And Crop Diversification: A Policy Analysis Matrix For Thai Agriculture," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 211-222, January.
    4. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    5. Satyasai, K.J.S. & Viswanathan, K.U., 1997. "Evaluation of Alternative Water Management Strategies for Water Scarce Areas," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 52(3), September.
    6. Amir, I. & Fisher, F. M., 1999. "Analyzing agricultural demand for water with an optimizing model," Agricultural Systems, Elsevier, vol. 61(1), pages 45-56, July.
    7. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    8. Hardaker, J. Brian & Pandey, Sushil & Patten, Louise H., 1991. "Farm Planning under Uncertainty: A Review of Alternative Programming Models," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 59(01), pages 1-14, April.
    9. Mainuddin, Mohammed & Das Gupta, Ashim & Raj Onta, Pushpa, 1997. "Optimal crop planning model for an existing groundwater irrigation project in Thailand," Agricultural Water Management, Elsevier, vol. 33(1), pages 43-62, May.
    10. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    11. Anderson, Jock R. & Dillon, John L. & Hardaker, Brian, 1977. "Agricultural Decision Analysis," Monographs: Applied Economics, AgEcon Search, number 288652, July.
    12. Holden, Stein T. & Shiferaw, Bekele & Wik, Mette, 1998. "Poverty, market imperfections and time preferences: of relevance for environmental policy?," Environment and Development Economics, Cambridge University Press, vol. 3(1), pages 105-130, February.
    13. Perry, C.J, 2001. "Charging for irrigation water: The issues and options, with a case study from Iran," IWMI Research Reports H 27766, International Water Management Institute.
    14. J. Brian Hardaker & Louise H. Patten & David J. Pannell, 1988. "Utility‐Efficient Programming For Whole‐Farm Planning," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 32(2-3), pages 88-97, 08-12.
    15. Dinar, Ariel & Yaron, Dan & Baruchin, Arieh, 1992. "Alternative cropping systems and intensive irrigation under arid zone conditions," Agricultural Systems, Elsevier, vol. 38(3), pages 301-318.
    16. David K. Lambert & Bruce A. McCarl, 1985. "Risk Modeling Using Direct Solution of Nonlinear Approximations of the Utility Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(4), pages 846-852.
    17. Rosegrant, Mark W. & Binswanger, Hans P., 1994. "Markets in tradable water rights: Potential for efficiency gains in developing country water resource allocation," World Development, Elsevier, vol. 22(11), pages 1613-1625, November.
    18. Javier Calatrava & Alberto Garrido, 2005. "Spot water markets and risk in water supply," Agricultural Economics, International Association of Agricultural Economists, vol. 33(2), pages 131-143, September.
    19. Perry, Christopher J., 2001. "Charging for irrigation water: The issues and options, with a case study from Iran," IWMI Research Reports 44567, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torkamani, Javad, 2005. "Using a whole-farm modelling approach to assess prospective technologies under uncertainty," Agricultural Systems, Elsevier, vol. 85(2), pages 138-154, August.
    2. Kingwell, Ross, 1996. "Programming models of farm supply response: The impact of specification errors," Agricultural Systems, Elsevier, vol. 50(3), pages 307-324.
    3. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    4. Pannell, David J. & Nordblom, Thomas L., 1998. "Impacts of risk aversion on whole-farm management in Syria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 42(3), pages 1-21.
    5. Pannell, David J. & Malcolm, Bill & Kingwell, Ross S., 2000. "Are we risking too much? Perspectives on risk in farm modelling," Agricultural Economics, Blackwell, vol. 23(1), pages 69-78, June.
    6. Apland, Jeffrey & Hauer, Grant, 1993. "Discrete Stochastic Programming: Concepts, Examples And A Review Of Empirical Applications," Staff Papers 13793, University of Minnesota, Department of Applied Economics.
    7. He, Lixia & Tyner, Wallace E. & Doukkali, Rachid & Siam, Gamal, 2005. "Strategic Policy Options to Improve Irrigation Water Allocation Efficiency: Analysis on Egypt and Morocco," 2005 Annual meeting, July 24-27, Providence, RI 19467, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Heidelbach, Olaf, 2007. "Efficiency of selected risk management instruments: An empirical analysis of risk reduction in Kazakhstani crop production," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 40, number 92323.
    9. Torkamani, Javad & Hardaker, J. Brian, 1996. "A study of economic efficiency of Iranian farmers in Ramjerd district: an application of stochastic programming," Agricultural Economics, Blackwell, vol. 14(2), pages 73-83, July.
    10. Perez-Mesa, Juan Carlos & Galdeano-Gomez, Emilio & Aznar-Sanchez, Jose A., 2011. "Management System for Harvest Scheduling: The Case of Horticultural Production in Southeast Spain," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 14(4), pages 1-20, November.
    11. M Ejaz Qureshi & Tian Shi & Sumaira Qureshi & Wendy Proctor & Mac Kirby, 2009. "Removing Barriers to Facilitate Efficient Water Markets in the Murray Darling Basin – A Case Study from Australia," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2009-02, CSIRO Sustainable Ecosystems.
    12. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    13. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    14. Lien, Gudbrand & Hardaker, J. Brian & Asseldonk, Marcel A.P.M. van & Richardson, James W., 2009. "Risk programming and sparse data: how to get more reliable results," Agricultural Systems, Elsevier, vol. 101(1-2), pages 42-48, June.
    15. Musshoff, Oliver & Hirschauer, Norbert, 2007. "What benefits are to be derived from improved farm program planning approaches? - The role of time series models and stochastic optimization," Agricultural Systems, Elsevier, vol. 95(1-3), pages 11-27, December.
    16. Gudbrand Lien & J. Hardaker & Marcel Asseldonk & James Richardson, 2011. "Risk programming analysis with imperfect information," Annals of Operations Research, Springer, vol. 190(1), pages 311-323, October.
    17. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Sophisticated Program Planning Approaches Generate Large Benefits in High Risk Crop Farming," 82nd Annual Conference, March 31 - April 2, 2008, Royal Agricultural College, Cirencester, UK 36865, Agricultural Economics Society.
    18. Cai, Ximing & Ringler, Claudia & You, Jiing-Yun, 2008. "Substitution between water and other agricultural inputs: Implications for water conservation in a River Basin context," Ecological Economics, Elsevier, vol. 66(1), pages 38-50, May.
    19. Rosa, Franco, 2014. "Evaluation of risk in farm planning: a case study," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173126, Italian Association of Agricultural and Applied Economics (AIEAA).
    20. Salman, Amer Zahi & Al-Karablieh, Emad, 2004. "Measuring the willingness of farmers to pay for groundwater in the highland areas of Jordan," Agricultural Water Management, Elsevier, vol. 68(1), pages 61-76, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erg:wpaper:508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sherine Ghoneim (email available below). General contact details of provider: https://edirc.repec.org/data/erfaceg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.