IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Decomposing Gender and Ethnic Earnings Gaps in Seven West African Cities

Listed author(s):
  • Christophe Nordman


    (DIAL, IRD, Paris)

  • Anne-Sophie Robilliard


    (DIAL, IRD, Paris)

  • François Roubaud


    (DIAL, IRD, Paris)

(english) In this paper, we analyse the size and determinants of gender and ethnic earnings gaps in seven West African capitals (Abidjan, Bamako, Cotonou, Dakar, Lome, Niamey and Ouagadougou) based on a unique and perfectly comparable dataset coming from the 1-2-3 Surveys conducted in the seven cities from 2001 to 2002. Analysing gender and ethnic earnings gaps in an African context raises a number of important issues that our paper attempts to address, notably by taking into account labour allocation between public, private formal and informal sectors which can be expected to contribute to earnings gaps. Our results show that gender earnings gaps are large in all the cities of our sample and that gender differences in the distribution of characteristics usually explain less than half of the raw gender gap. By contrast, majority ethnic groups do not appear to have a systematic favourable position in the urban labour markets of our sample of countries and observed ethnic gaps are small relative to gender gaps. Whatever the “sign” of the gap, the contribution of differences in the distribution of individual characteristics varies markedly between cities. Taking into account differences in sectoral locations in the decomposition of gender earnings gaps provides evidence that within-sector differences in earnings account for the largest share of the gender gap and that the differences in sectoral locations are always more favorable to men than to women. By contrast, concerning ethnic earnings gaps, the full decomposition indicates that sectoral location sometimes plays a “compensating” role against observed earnings gaps. Looking at finer levels of ethnic disaggregation confirms that ethnic earnings differentials are systematically smaller that gender differentials. _________________________________ (français) Dans cette étude nous analysons le poids et les déterminants des différentiels de rémunérations entre genre et groupes ethniques dans sept métropoles d’Afrique de l’Ouest (Abidjan, Bamako, Cotonou, Dakar, Lomé, Niamey and Ouagadougou), en mobilisant une base de données unique et parfaitement comparable, provenant des enquêtes 1-2-3 réalisées dans les sept villes en 2001 et 2002. Cette question soulève un certain nombre de questions méthodologiques que nous tentons de traiter en détail, notamment en tenant compte des différences de composition ethnique et de genre entre les secteurs public, privé formel et informel qui sont susceptibles de jouer sur les écarts de revenus. Les résultats mettent en évidence l’existence d’un déficit systématique de rémunération pour les femmes, les caractéristiques des emplois expliquant moins de la moitié de ces écarts. A contrario, les groupes ethniques majoritaires ne semblent pas bénéficier d’une situation avantageuse et les écarts de revenus suivant le groupe ethnique sont relativement faibles par rapport à ceux que l’on observe suivant le genre. Quel que soit le signe de ce différentiel (positif ou négatif), la contribution expliquée par les caractéristiques observées de l’emploi varie très sensiblement d’une ville à l’autre. Les estimations montrent qu’une grande partie de l’écart de revenu selon le genre provient de l’allocation sectorielle, et que cette dernière est toujours défavorable aux femmes. En revanche, dans le cas des écarts suivant le groupe ethnique, la distribution par secteur institutionnel joue parfois de façon positive dans le sens d’une réduction des écarts. Finalement, une désagrégation plus fine des groupes ethniques, au-delà de la partition majoritaire/minoritaire, confirme que l’entrée ethnique est systématiquement moins significative sur les revenus du travail que le genre.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: First version, 2009
Download Restriction: no

Paper provided by DIAL (Développement, Institutions et Mondialisation) in its series Working Papers with number DT/2009/07.

in new window

Length: 30 pages
Date of creation: Oct 2009
Handle: RePEc:dia:wpaper:dt200907
Contact details of provider: Postal:
4, rue d'Enghien, 75010 Paris

Phone: + 33 1 53 24 14 50
Fax: + 33 1 53 24 14 51
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Bennell, Paul, 1996. "Rates of return to education: Does the conventional pattern prevail in sub-Saharan Africa?," World Development, Elsevier, vol. 24(1), pages 183-199, January.
  2. T. Paul Schultz, 2004. "Evidence of Returns to Schooling in Africa from Household Surveys: Monitoring and Restructuring the Market for Education," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 13(02), pages 95-148, December.
  3. Doris Weichselbaumer & Rudolf Winter-Ebmer, 2005. "A Meta-Analysis of the International Gender Wage Gap," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 479-511, 07.
  4. Tilahun Temesgen, 2006. "Decomposing Gender Wage Differentials in Urban Ethiopia: Evidence from Linked Employer-Employee (LEE) Manufacturing Survey Data," Global Economic Review, Taylor & Francis Journals, vol. 35(1), pages 43-66.
  5. Altonji, Joseph G. & Blank, Rebecca M., 1999. "Race and gender in the labor market," Handbook of Labor Economics,in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 48, pages 3143-3259 Elsevier.
  6. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
  7. Tracy Regan & Ronald Oaxaca, 2009. "Work experience as a source of specification error in earnings models: implications for gender wage decompositions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 22(2), pages 463-499, April.
  8. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
  9. Abigail Barr & Abena Oduro, 2000. "Ethnicity and wage determination in Ghana," CSAE Working Paper Series 2000-09, Centre for the Study of African Economies, University of Oxford.
  10. Appleton, Simon & Hoddinott, John & Krishnan, Pramila, 1999. "The Gender Wage Gap in Three African Countries," Economic Development and Cultural Change, University of Chicago Press, vol. 47(2), pages 289-312, January.
  11. Måns Söderbom & Francis Teal & Anthony Wambugu & Godius Kahyarara, 2006. "The Dynamics of Returns to Education in Kenyan and Tanzanian Manufacturing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(3), pages 261-288, 06.
  12. Randall S. Brown & Marilyn Moon & Barbara S. Zoloth, 1980. "Incorporating Occupational Attainment in Studies of Male-Female Earnings Differentials," Journal of Human Resources, University of Wisconsin Press, vol. 15(1), pages 3-28.
  13. Christophe Nordman & Faly Rakotomanana & Anne-Sophie Robilliard, 2009. "Gender Disparities in the Malagasy Labour Market," Working Papers DT/2009/08, DIAL (Développement, Institutions et Mondialisation).
  14. Francine D. Blau & Lawrence M. Kahn, 2000. "Gender Differences in Pay," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 75-99, Fall.
  15. Glick, Peter & Sahn, David E, 1997. "Gender and Education Impacts on Employment and Earnings in West Africa: Evidence from Guinea," Economic Development and Cultural Change, University of Chicago Press, vol. 45(4), pages 793-823, July.
  16. Shoshana Neuman & Ronald Oaxaca, 2004. "Wage Decompositions with Selectivity-Corrected Wage Equations: A Methodological Note," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 2(1), pages 3-10, April.
  17. David Neumark, 1988. "Employers' Discriminatory Behavior and the Estimation of Wage Discrimination," Journal of Human Resources, University of Wisconsin Press, vol. 23(3), pages 279-295.
  18. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
  19. repec:dau:papers:123456789/4400 is not listed on IDEAS
  20. Fearon, James D, 2003. "Ethnic and Cultural Diversity by Country," Journal of Economic Growth, Springer, vol. 8(2), pages 195-222, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:dia:wpaper:dt200907. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Loic Le Pezennec)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.