IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/8925.html
   My bibliography  Save this paper

The Optimal Control of Infectious Diseases via Prevention and Treatment

Author

Listed:
  • Rowthorn, Robert
  • Toxvaerd, Flavio

Abstract

This paper fully characterizes the optimal control of a recurrent infectious disease through the use of (non-vaccine) prevention and treatment. The dynamic system may admit multiple steady states and the optimal policy may be path dependent. We find that an optimal path cannot end at a point with maximal prevention; it is necessarily zero or at an intermediate level. In contrast, an optimal path must end at a point at which treatment is either maximal or minimal. We find that the comparative statics of the model may radically differ across steady states, which has important policy implications. Last, we consider the model with decentralized decision making and compare the equilibrium outcomes with the socially optimal outcomes. We find that steady state prevalence levels in decentralized equilibrium must be equal to or higher than the socially optimal levels. While steady state treatment levels under decentralization are typically socially optimal, steady state prevention (if used) is socially suboptimal.

Suggested Citation

  • Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:8925
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP8925
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anderson, Soren T. & Laxminarayan, Ramanan & Salant, Stephen W., 2012. "Diversify or focus? Spending to combat infectious diseases when budgets are tight," Journal of Health Economics, Elsevier, vol. 31(4), pages 658-675.
    2. Klein, Eili & Laxminarayan, Ramanan & Smith, David L. & Gilligan, Christopher A., 2007. "Economic incentives and mathematical models of disease," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 707-732, October.
    3. Aadland David & Finnoff David C. & Huang Kevin X.D., 2013. "Syphilis Cycles," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 14(1), pages 297-348, June.
    4. Rubio, Santiago J. & Escriche, Luisa, 2001. "Strategic pigouvian taxation, stock externalities and polluting non-renewable resources," Journal of Public Economics, Elsevier, vol. 79(2), pages 297-313, February.
    5. Karl-Göran Mäler & Anastasios Xepapadeas & Aart de Zeeuw, 2003. "The Economics of Shallow Lakes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 603-624, December.
    6. Timothy C Reluga, 2010. "Game Theory of Social Distancing in Response to an Epidemic," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-9, May.
    7. Philipson, Tomas, 2000. "Economic epidemiology and infectious diseases," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 33, pages 1761-1799, Elsevier.
    8. Arrow, Kenneth J. & Kurz, Mordecai, 1969. "Optimal public investment policy and controllability with fixed private savings ratio," Journal of Economic Theory, Elsevier, vol. 1(2), pages 141-177, August.
    9. Goldman Steven Marc & Lightwood James, 2002. "Cost Optimization in the SIS Model of Infectious Disease with Treatment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 2(1), pages 1-24, April.
    10. Mark Gersovitz & Jeffrey S. Hammer, 2004. "The Economical Control of Infectious Diseases," Economic Journal, Royal Economic Society, vol. 114(492), pages 1-27, January.
    11. Michael Kremer, Christopher M. Snyder & Christopher M. Snyder, 2013. "When Is Prevention More Profitable than Cure? The Impact of Time-Varying Consumer Heterogeneity - Working Paper 334," Working Papers 334, Center for Global Development.
    12. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    13. Caputo,Michael R., 2005. "Foundations of Dynamic Economic Analysis," Cambridge Books, Cambridge University Press, number 9780521842723, November.
    14. Laxminarayan, Ramanan & Brown, Gardner M., 2001. "Economics of Antibiotic Resistance: A Theory of Optimal Use," Journal of Environmental Economics and Management, Elsevier, vol. 42(2), pages 183-206, September.
    15. Goenka, Aditya & Liu, Lin & Nguyen, Manh-Hung, 2014. "Infectious diseases and economic growth," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 34-53.
    16. Doris A. Behrens & Jonathan P. Caulkins & Gernot Tragler & Gustav Feichtinger, 2000. "Optimal Control of Drug Epidemics: Prevent and Treat---But Not at the Same Time?," Management Science, INFORMS, vol. 46(3), pages 333-347, March.
    17. Geoffard, Pierre-Yves & Philipson, Tomas, 1996. "Rational Epidemics and Their Public Control," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(3), pages 603-624, August.
    18. Wagener, F. O. O., 2003. "Skiba points and heteroclinic bifurcations, with applications to the shallow lake system," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1533-1561, July.
    19. Herrmann, Markus & Gaudet, Gérard, 2009. "The economic dynamics of antibiotic efficacy under open access," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 334-350, May.
    20. Michael Kremer, 1996. "Integrating Behavioral Choice into Epidemiological Models of AIDS," The Quarterly Journal of Economics, Oxford University Press, vol. 111(2), pages 549-573.
    21. Mark Gersovitz & Jeffrey S. Hammer, 2003. "Infectious Diseases, Public Policy, and the Marriage of Economics and Epidemiology," The World Bank Research Observer, World Bank Group, vol. 18(2), pages 129-157.
    22. Farzin, Y. H., 1996. "Optimal pricing of environmental and natural resource use with stock externalities," Journal of Public Economics, Elsevier, vol. 62(1-2), pages 31-57, October.
    23. Toxvaerd, F.M.O, 2020. "Equilibrium Social Distancing," Cambridge Working Papers in Economics 2021, Faculty of Economics, University of Cambridge.
    24. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    25. Michael Kremer & Christopher Snyder, 2013. "When is Prevention More Profitable than Cure?," CID Working Papers 252, Center for International Development at Harvard University.
    26. Goyal, Sanjeev & Vigier, Adrien, 2015. "Interaction, protection and epidemics," Journal of Public Economics, Elsevier, vol. 125(C), pages 64-69.
    27. Michael Kremer & Christopher M. Snyder, 2013. "When Is Prevention More Profitable than Cure? The Impact of Time-Varying Consumer Heterogeneity," NBER Working Papers 18862, National Bureau of Economic Research, Inc.
    28. Robert Halvorsen & David F. Layton (ed.), 2006. "Explorations in Environmental and Natural Resource Economics," Books, Edward Elgar Publishing, number 3697.
    29. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    30. Flavio Toxvaerd, 2019. "Rational Disinhibition And Externalities In Prevention," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 60(4), pages 1737-1755, November.
    31. Toxvaerd, F. & Rowthorn, R., 2020. "On the Management of Population Immunity," Cambridge Working Papers in Economics 2080, Faculty of Economics, University of Cambridge.
    32. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    33. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    34. W.A. Brock & D. Starrett, 2003. "Managing Systems with Non-convex Positive Feedback," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(4), pages 575-602, December.
    35. Michael Kremer, 1996. "Integrating Behavioral Choice into Epidemiological Models of the AIDS Epidemic," NBER Working Papers 5428, National Bureau of Economic Research, Inc.
    36. Toxvaerd, Flavio, 2010. "Infection, Acquired Immunity and Externalities in Treatment," CEPR Discussion Papers 8111, C.E.P.R. Discussion Papers.
    37. Brito, Dagobert L. & Sheshinski, Eytan & Intriligator, Michael D., 1991. "Externalities and compulsary vaccinations," Journal of Public Economics, Elsevier, vol. 45(1), pages 69-90, June.
    38. Tahvonen Olli & Kuuluvainen Jari, 1993. "Economic Growth, Pollution, and Renewable Resources," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 101-118, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    2. Joshua S. Gans, 2020. "The Economic Consequences of R̂ = 1: Towards a Workable Behavioural Epidemiological Model of Pandemics," NBER Working Papers 27632, National Bureau of Economic Research, Inc.
    3. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    4. Telalagic, S., 2012. "Optimal Treatment of an SIS Disease with Two Strains," Cambridge Working Papers in Economics 1229, Faculty of Economics, University of Cambridge.
    5. La Torre, Davide & Malik, Tufail & Marsiglio, Simone, 2020. "Optimal control of prevention and treatment in a basic macroeconomic–epidemiological model," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 100-108.
    6. Joshua S. Gans, 2023. "Vaccine Hesitancy, Passports, And The Demand For Vaccination," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(2), pages 641-652, May.
    7. Adriani, Fabrizio & Ladley, Dan, 2021. "Social distance, speed of containment and crowding in/out in a network model of contagion," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 597-625.
    8. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    9. Goodkin-Gold, Matthew & Kremer, Michael & Snyder, Christopher M. & Williams, Heidi, 2022. "Optimal vaccine subsidies for endemic diseases," International Journal of Industrial Organization, Elsevier, vol. 84(C).
    10. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    11. Farboodi, Maryam & Jarosch, Gregor & Shimer, Robert, 2021. "Internal and external effects of social distancing in a pandemic," Journal of Economic Theory, Elsevier, vol. 196(C).
    12. Fabrizio Adriani, 2020. "Social distance, speed of containment, and crowding in/out in a network model of contagion," Discussion Papers 2020-10, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    13. Goenka, Aditya & Liu, Lin & Nguyen, Manh-Hung, 2014. "Infectious diseases and economic growth," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 34-53.
    14. Sabine Liebenehm & Bernard Bett & Cristobal Verdugo & Mohamed Said, 2016. "Optimal Drug Control under Risk of Drug Resistance – The Case of African Animal Trypanosomosis," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 510-533, June.
    15. Sims, Charles & Finnoff, David & O’Regan, Suzanne M., 2016. "Public control of rational and unpredictable epidemics," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 161-176.
    16. Luca Gori & Cristiana Mammana & Piero Manfredi & Elisabetta Michetti, 2022. "Economic development with deadly communicable diseases and public prevention," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 912-943, October.
    17. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    18. David Aadland & David Finnoff & Kevin X. D. Huang, 2016. "Behavioral Origins of Epidemiological Bifurcations," Vanderbilt University Department of Economics Working Papers 16-00004, Vanderbilt University Department of Economics.
    19. d’Albis, Hippolyte & Augeraud-Véron, Emmanuelle, 2021. "Optimal prevention and elimination of infectious diseases," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    20. Goyal, Sanjeev & Vigier, Adrien, 2015. "Interaction, protection and epidemics," Journal of Public Economics, Elsevier, vol. 125(C), pages 64-69.

    More about this item

    Keywords

    Economic epidemiology; Hysteresis; Non-convex systems; Optimal and equilibrium policy mix; Treatment and prevention;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:8925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.