IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/12130.html
   My bibliography  Save this paper

A Generalized Approach to Indeterminacy in Linear Rational Expectations Models

Author

Listed:
  • Bianchi, Francesco
  • Nicol�, Giovanni

Abstract

We propose a novel approach to deal with the problem of indeterminacy in Linear Rational Expectations models. The method consists of augmenting the original model with a set of auxiliary exogenous equations that are used to provide the adequate number of explosive roots in presence of indeterminacy. The solution in this expanded state space, if it exists, is always determinate, and is identical to the indeterminate solution of the original model. The proposed approach accommodates determinacy and any degree of indeterminacy, and it can be implemented even when the boundaries of the determinacy region are unknown. Thus, the researcher can estimate the model by using standard packages without restricting the estimates to a certain area of the parameter space. We apply our method to simulated and actual data from a prototypical New-Keynesian model for both regions of the parameter space. We show that our method successfully recovers the true parameter values independent of the initial values.

Suggested Citation

  • Bianchi, Francesco & Nicol�, Giovanni, 2017. "A Generalized Approach to Indeterminacy in Linear Rational Expectations Models," CEPR Discussion Papers 12130, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:12130
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=12130
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Farmer, Roger E.A. & Khramov, Vadim & Nicolò, Giovanni, 2015. "Solving and estimating indeterminate DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 17-36.
    2. King, Robert G & Watson, Mark W, 1998. "The Solution of Singular Linear Difference Systems under Rational Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1015-1026, November.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    4. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    5. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    6. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    7. Thomas A. Lubik & Frank Schorfheide, 2004. "Testing for Indeterminacy: An Application to U.S. Monetary Policy," American Economic Review, American Economic Association, vol. 94(1), pages 190-217, March.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2011. "Monetary Policy, Trend Inflation, and the Great Moderation: An Alternative Interpretation," American Economic Review, American Economic Association, vol. 101(1), pages 341-370, February.
    9. Lubik, Thomas A. & Schorfheide, Frank, 2003. "Computing sunspot equilibria in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 273-285, November.
    10. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    11. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    12. Cass, David & Shell, Karl, 1983. "Do Sunspots Matter?," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 193-227, April.
    13. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    14. Farmer Roger E. A. & Guo Jang-Ting, 1994. "Real Business Cycles and the Animal Spirits Hypothesis," Journal of Economic Theory, Elsevier, vol. 63(1), pages 42-72, June.
    15. Arias, Jonas E. & Ascari, Guido & Branzoli, Nicola & Castelnuovo, Efrem, 2014. "Monetary Policy, Trend Inflation and the Great Moderation: An Alternative Interpretation - Comment," International Finance Discussion Papers 1127, Board of Governors of the Federal Reserve System (U.S.).
    16. Guido Ascari & Paolo Bonomolo & Hedibert F. Lopes, 2016. "Rational Sunspots," Economics Series Working Papers 787, University of Oxford, Department of Economics.
    17. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Dai & Mark Weder & Bo Zhang, 2017. "Animal Spirits, Financial Markets and Aggregate Instability," School of Economics Working Papers 2017-08, University of Adelaide, School of Economics.

    More about this item

    Keywords

    Bayesian methods.; General Equilibrium; Indeterminacy; Solution method;

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:12130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.