IDEAS home Printed from
   My bibliography  Save this paper

Econometric Analysis of Production Networks with Dominant Units


  • Pesaran, H.
  • Yang, Cynthia Fan


This paper builds on the work of Acemoglu et al. (2012) and considers a production network with unobserved common technological factor and establishes general conditions under which the network structure contributes to aggregate fluctuations. It introduces the notions of strongly and weakly dominant units, and shows that at most a finite number of units in the network can be strongly dominant, while the number of weakly dominant units can rise with N (the cross section dimension). This paper further establishes the equivalence between the highest degree of dominance in a network and the inverse of the shape parameter of the power law. A new extremum estimator for the degree of pervasiveness of individual units in the network is proposed, and is shown to be robust to the choice of the underlying distribution. Using Monte Carlo techniques, the proposed estimator is shown to have satisfactory small sample properties. Empirical applications to US input-output tables suggest the presence of production sectors with a high degree of pervasiveness, but their effects are not sufficiently pervasive to be considered as strongly dominant.

Suggested Citation

  • Pesaran, H. & Yang, Cynthia Fan, 2016. "Econometric Analysis of Production Networks with Dominant Units," Cambridge Working Papers in Economics 1678, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1678
    Note: mhp1

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    2. Daron Acemoglu & David Autor & David Dorn & Gordon H. Hanson & Brendan Price, 2016. "Import Competition and the Great US Employment Sag of the 2000s," Journal of Labor Economics, University of Chicago Press, vol. 34(S1), pages 141-198.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    4. Pesaran, M. Hashem & Chudik, Alexander, 2014. "Aggregation in large dynamic panels," Journal of Econometrics, Elsevier, vol. 178(P2), pages 273-285.
    5. Vasco M. Carvalho, 2014. "From Micro to Macro via Production Networks," Journal of Economic Perspectives, American Economic Association, vol. 28(4), pages 23-48, Fall.
    6. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    7. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    8. Alexander Chudik & M. Hashem Pesaran, 2013. "Econometric Analysis of High Dimensional VARs Featuring a Dominant Unit," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 592-649, August.
    9. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    10. Vasco M. Carvalho, 2014. "From Micro to Macro via Production Networks," Working Papers 793, Barcelona Graduate School of Economics.
    11. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    12. Michael Horvath, 1998. "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(4), pages 781-808, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Frohm, Erik & Gunnella, Vanessa, 2017. "Sectoral interlinkages in global value chains: spillovers and network effects," Working Paper Series 2064, European Central Bank.
    2. Jiti Gao & Oliver Linton & Bin Peng, 2017. "Inference on a Semiparametric Model with Global Power Law and Local Nonparametric Trends," Monash Econometrics and Business Statistics Working Papers 10/17, Monash University, Department of Econometrics and Business Statistics.
    3. van de Leur, Michiel C.W. & Lucas, André & Seeger, Norman J., 2017. "Network, market, and book-based systemic risk rankings," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 84-90.
    4. repec:eee:anture:v:66:y:2017:i:c:p:74-94 is not listed on IDEAS
    5. Dungey, Mardi & Harvey, John & Volkov, Vladimir, 2017. "The changing international network of sovereign debt and financial institutions," Working Papers 2017-04, University of Tasmania, Tasmanian School of Business and Economics.

    More about this item


    aggregate fluctuations; strongly and weakly dominant units; spatial models; outdegrees; degree of pervasiveness; power law; input-output tables; US economy;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1678. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.