IDEAS home Printed from https://ideas.repec.org/p/bro/econwp/2010-10.html
   My bibliography  Save this paper

Regret Matching with Finite Memory

Author

Abstract

We consider the regret matching process with finite memory. For general games in normal form, it is shown that any recurrent class of the dynamics must be such that the action profiles that appear in it constitute a closed set under the ìsame or better replyî correspondence (CUSOBR set) that does not contain a smaller product set that is closed under ìsame or better replies,î i.e., a smaller PCUSOBR set. Two characterizations of the recurrent classes are offered. First, for the class of weakly acyclic games under better replies, each recurrent class is monomorphic and corresponds to each pure Nash equilibrium. Second, for a modified process with random sampling, if the sample size is sufficiently small with respect to the memory bound, the recurrent classes consist of action profiles that are minimal PCUSOBR sets. Our results are used in a robust example that shows that the limiting empirical distribution of play can be arbitrarily far from correlated equilibria for any large but finite choice of the memory bound.

Suggested Citation

  • Rene Saran & Roberto Serrano, 2010. "Regret Matching with Finite Memory," Working Papers 2010-10, Brown University, Department of Economics.
  • Handle: RePEc:bro:econwp:2010-10
    as

    Download full text from publisher

    File URL: https://economics.brown.edu/sites/g/files/dprerj726/files/papers/2010-10_paper.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Viossat, Yannick, 2007. "The replicator dynamics does not lead to correlated equilibria," Games and Economic Behavior, Elsevier, vol. 59(2), pages 397-407, May.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    4. Rene Saran & Roberto Serrano, 2010. "Ex-post regret learning in games with fixed and random matching: The case of private values," Working Papers 2010-11, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    5. Sergiu Hart, 2013. "Adaptive Heuristics," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 11, pages 253-287, World Scientific Publishing Co. Pte. Ltd..
    6. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    7. Andriy Zapechelnyuk, 2008. "Better-Reply Dynamics with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 33(4), pages 869-879, November.
    8. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    9. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    10. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    11. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    12. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    13. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    14. Fudenberg, Drew & Levine, David K., 1995. "Consistency and cautious fictitious play," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 1065-1089.
    15. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    16. Young, H. Peyton, 2004. "Strategic Learning and its Limits," OUP Catalogue, Oxford University Press, number 9780199269181, Decembrie.
    17. Friedman, James W. & Mezzetti, Claudio, 2001. "Learning in Games by Random Sampling," Journal of Economic Theory, Elsevier, vol. 98(1), pages 55-84, May.
    18. repec:dau:papers:123456789/1061 is not listed on IDEAS
    19. Josephson, Jens & Matros, Alexander, 2004. "Stochastic imitation in finite games," Games and Economic Behavior, Elsevier, vol. 49(2), pages 244-259, November.
    20. repec:dau:papers:123456789/1119 is not listed on IDEAS
    21. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    22. Hurkens Sjaak, 1995. "Learning by Forgetful Players," Games and Economic Behavior, Elsevier, vol. 11(2), pages 304-329, November.
    23. Lehrer, Ehud & Solan, Eilon, 2009. "Approachability with bounded memory," Games and Economic Behavior, Elsevier, vol. 66(2), pages 995-1004, July.
    24. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damjanovic, Vladislav, 2017. "Two “little treasure games” driven by unconditional regret," Economics Letters, Elsevier, vol. 150(C), pages 99-103.
    2. Saran, R.R.S. & Serrano, R., 2010. "Ex-Post regret learning in games with fixed and random matching: the case of private values," Research Memorandum 032, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    3. Saran, Rene & Serrano, Roberto, 2014. "Ex-post regret heuristics under private values (I): Fixed and random matching," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 97-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    2. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    3. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    4. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    5. Saran, Rene & Serrano, Roberto, 2014. "Ex-post regret heuristics under private values (I): Fixed and random matching," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 97-111.
    6. Eric Friedman & Scott Shenker & Amy Greenwald, 1998. "Learning in Networks Contexts: Experimental Results from Simulations," Departmental Working Papers 199825, Rutgers University, Department of Economics.
    7. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Nov 2023.
    8. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, vol. 7(4), pages 1-16, November.
    9. Geir B. Asheim & Mark Voorneveld & Jörgen Weibull, 2009. "Epistemically stable strategy sets," Working Papers hal-00440098, HAL.
    10. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    11. Block, Juan I. & Fudenberg, Drew & Levine, David K., 2019. "Learning dynamics with social comparisons and limited memory," Theoretical Economics, Econometric Society, vol. 14(1), January.
    12. Gilles Grandjean & Ana Mauleon & Vincent Vannetelbosch, 2017. "Strongly rational sets for normal-form games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 35-46, April.
    13. Juan I Block & Drew Fudenberg & David K Levine, 2017. "Learning Dynamics Based on Social Comparisons," Levine's Working Paper Archive 786969000000001375, David K. Levine.
    14. Du, Ye & Lehrer, Ehud, 2020. "Constrained no-regret learning," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 16-24.
    15. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    16. Christoph March, 2011. "Adaptive social learning," Working Papers halshs-00572528, HAL.
    17. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    18. Saran, R.R.S. & Serrano, R., 2010. "Ex-Post regret learning in games with fixed and random matching: the case of private values," Research Memorandum 032, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    19. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    20. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.

    More about this item

    Keywords

    Regret Matching; Nash Equilibria; Closed Sets under Same or Better Replies; Correlated Equilibria.;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2010-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brown Economics Webmaster (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.