IDEAS home Printed from https://ideas.repec.org/p/ajf/louvlf/2022005.html
   My bibliography  Save this paper

Testing for Causality between Climate Policies and Carbon Emissions Reduction

Author

Listed:
  • Candelon, Bertrand

    (Université catholique de Louvain, LIDAM/LFIN, Belgium)

  • Hasse, Jean-Baptiste

    (Aix-Marseille University)

Abstract

In this paper, we evaluate the causal effects of climate policies on carbon emissions reductions. Using Sweden as a case study, we compare the effects of the domestic carbon tax and the Kyoto Protocol over the period 1965–2018. A simulation exercise shows that the test for causality in the frequency domain offers policy-makers a useful tool for evaluating the effect of public policies. The empirical results indicate a significant causal effect of the carbon tax policy on carbon intensity dynamics in the long run.

Suggested Citation

  • Candelon, Bertrand & Hasse, Jean-Baptiste, 2022. "Testing for Causality between Climate Policies and Carbon Emissions Reduction," LIDAM Discussion Papers LFIN 2022005, Université catholique de Louvain, Louvain Finance (LFIN).
  • Handle: RePEc:ajf:louvlf:2022005
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A262723/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bertrand Candelon & Elena-Ivona Dumitrescu & Christophe Hurlin & Franz C. Palm, 2013. "Multivariate Dynamic Probit Models: An Application to Financial Crises Mutation," Advances in Econometrics, in: VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims, volume 32, pages 395-427, Emerald Group Publishing Limited.
    2. Liu, Jiatong & Mao, Weifang & Qiao, Xingzhi, 2023. "Dynamic and asymmetric effects between carbon emission trading, financial uncertainties, and Chinese industry stocks: Evidence from quantile-on-quantile and causality-in-quantiles analysis," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    3. Nakhli, Mohamed Sahbi & Shahbaz, Muhammad & Ben Jebli, Mehdi & Wang, Shizhen, 2022. "Nexus between economic policy uncertainty, renewable & non-renewable energy and carbon emissions: Contextual evidence in carbon neutrality dream of USA," Renewable Energy, Elsevier, vol. 185(C), pages 75-85.
    4. Olmstead, Sheila & Stavins, Robert, 2006. "An International Architecture for the Post-Kyoto Era," Working Paper Series rwp06-009, Harvard University, John F. Kennedy School of Government.
    5. Jurate Jaraite-Ka~ukauske and Corrado Di Maria, 2016. "Did the EU ETS Make a Difference? An Empirical Assessment Using Lithuanian Firm-Level Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    7. Breitung, Jörg & Schreiber, Sven, 2018. "Assessing causality and delay within a frequency band," Econometrics and Statistics, Elsevier, vol. 6(C), pages 57-73.
    8. Petrick, Sebastian & Wagner, Ulrich J., 2014. "The impact of carbon trading on industry: Evidence from German manufacturing firms," Kiel Working Papers 1912, Kiel Institute for the World Economy (IfW Kiel).
    9. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    10. William A. Pizer, 2006. "The Evolution of a Global Climate Change Agreement," American Economic Review, American Economic Association, vol. 96(2), pages 26-30, May.
    11. Belkhir, Mohamed & Naceur, Sami Ben & Candelon, Bertrand & Wijnandts, Jean-Charles, 2022. "Macroprudential policies, economic growth and banking crises," Emerging Markets Review, Elsevier, vol. 53(C).
    12. Marco Battaglini & Bård Harstad, 2020. "The Political Economy of Weak Treaties," Journal of Political Economy, University of Chicago Press, vol. 128(2), pages 544-590.
    13. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    14. Alice Lépissier & Matto Mildenberger, 2021. "Unilateral climate policies can substantially reduce national carbon pollution," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    15. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    16. Gilbert E. Metcalf & James H. Stock, 2023. "The Macroeconomic Impact of Europe's Carbon Taxes," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(3), pages 265-286, July.
    17. Rahel Aichele & Gabriel Felbermayr, 2015. "Kyoto and Carbon Leakage: An Empirical Analysis of the Carbon Content of Bilateral Trade," The Review of Economics and Statistics, MIT Press, vol. 97(1), pages 104-115, March.
    18. Bartram, Söhnke M. & Hou, Kewei & Kim, Sehoon, 2022. "Real effects of climate policy: Financial constraints and spillovers," Journal of Financial Economics, Elsevier, vol. 143(2), pages 668-696.
    19. Marco Bianchi, 1995. "Granger causality tests in the presence of structural changes," Bank of England working papers 33, Bank of England.
    20. William Nordhaus, 2019. "Climate Change: The Ultimate Challenge for Economics," American Economic Review, American Economic Association, vol. 109(6), pages 1991-2014, June.
    21. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    22. Sheila M. Olmstead & Robert N. Stavins, 2006. "An International Policy Architecture for the Post-Kyoto Era," American Economic Review, American Economic Association, vol. 96(2), pages 35-38, May.
    23. Bianchi, Marco, 1995. "Granger Causality in the Presence of Structural Changes," LIDAM Discussion Papers IRES 1995018, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    24. Weitzman, Martin L., 2017. "Voting on prices vs. voting on quantities in a World Climate Assembly," Research in Economics, Elsevier, vol. 71(2), pages 199-211.
    25. Chen, Xia & Rahaman, Md Atikur & Murshed, Muntasir & Mahmood, Haider & Hossain, Md Afzal, 2023. "Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh," Energy, Elsevier, vol. 267(C).
    26. Gilbert E. Metcalf & James H. Stock, 2020. "Measuring the Macroeconomic Impact of Carbon Taxes," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 101-106, May.
    27. Rahel Aichele & Gabriel Felbermayr, 2013. "Estimating the Effects of Kyoto on Bilateral Trade Flows Using Matching Econometrics," The World Economy, Wiley Blackwell, vol. 36(3), pages 303-330, March.
    28. William D. Nordhaus, 2006. "After Kyoto: Alternative Mechanisms to Control Global Warming," American Economic Review, American Economic Association, vol. 96(2), pages 31-34, May.
    29. Hiroshi Yamada & Wei Yanfeng, 2014. "Some Theoretical and Simulation Results on the Frequency Domain Causality Test," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 936-947, November.
    30. Zhang, Dayong & Zhang, Zhiwei & Managi, Shunsuke, 2019. "A bibliometric analysis on green finance: Current status, development, and future directions," Finance Research Letters, Elsevier, vol. 29(C), pages 425-430.
    31. Julius J. Andersson, 2019. "Carbon Taxes and CO2 Emissions: Sweden as a Case Study," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 1-30, November.
    32. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    33. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    34. Matteo Farnè & Angela Montanari, 2022. "A Bootstrap Method to Test Granger-Causality in the Frequency Domain," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 935-966, March.
    35. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    36. repec:reg:rpubli:353 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seidman, Laurence & Lewis, Kenneth, 2009. "Compensations and contributions under an international carbon treaty," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 341-350, May.
    2. Hansjürgens, Bernd, 2008. "Internationale Klimapolitik nach Kyoto: Architekturen und Institutionen," UFZ Discussion Papers 10/2008, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Jannik Hensel & Giacomo Mangiante & Luca Moretti, 2023. "Carbon pricing and inflation expectations: evidence from France," ECON - Working Papers 434, Department of Economics - University of Zurich.
    4. Stefano Carattini & Giseong Kim & Givi Melkadze & Aude Pommeret, 2023. "Carbon Taxes and Tariffs, Financial Frictions, and International Spillovers," CESifo Working Paper Series 10851, CESifo.
    5. Josef Gotvald, 2024. "The role of environmental taxes and other political instruments on the road to climate neutrality [Role environmentálních daní a dalších politických nástrojů na cestě za klimatickou neutralitou]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2024(1), pages 47-76.
    6. Valentina Bosetti & Jeffrey Frankel, 2014. "Sustainable Cooperation In Global Climate Policy: Specific Formulas And Emission Targets," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-34.
    7. Martinsson, Gustav & Sajtos, László & Strömberg, Per & Thomann, Christian, 2022. "Carbon Pricing and Firm-Level CO2 Abatement: Evidence from a Quarter of a Century-Long Panel," Misum Working Paper Series 2022-10, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    8. Matteo Farnè & Angela Montanari, 2022. "A Bootstrap Method to Test Granger-Causality in the Frequency Domain," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 935-966, March.
    9. Arampatzidis, Ioannis & Dergiades, Theologos & Kaufmann, Robert K. & Panagiotidis, Theodore, 2021. "Oil and the U.S. stock market: Implications for low carbon policies," Energy Economics, Elsevier, vol. 103(C).
    10. Jeffrey A. Frankel, 2009. "An Elaborated Global Climate Policy Architecture: Specific Formulas and Emission Targets for All Countries in All Decades," NBER Working Papers 14876, National Bureau of Economic Research, Inc.
    11. Jannik Hensel & Giacomo Mangiante & Luca Moretti, 2023. "Carbon Pricing and Inflation Expectations: Evidence from France," CESifo Working Paper Series 10552, CESifo.
    12. Mireille Chiroleu-Assouline, 2022. "Rendre acceptable la nécessaire taxation du carbone. Quelles pistes pour la France ?," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 15-53.
    13. Sato, Misato & Rafaty, Ryan & Calel, Raphael & Grubb, Michael, 2022. "Allocation, allocation, allocation! The political economy of the development of the European Union Emissions Trading System," LSE Research Online Documents on Economics 115431, London School of Economics and Political Science, LSE Library.
    14. Rafaty, Ryan & Dolphin, Geoffroy & Pretis, Felix, 2021. "Carbon Pricing and the Elasticity of CO2 Emissions," RFF Working Paper Series 21-33, Resources for the Future.
    15. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2021. "The effect of carbon pricing on technological change for full energy decarbonization: A review of empirical ex‐post evidence," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    16. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2022. "Carbon pricing, border adjustment and climate clubs: An assessment with EMuSe," Discussion Papers 25/2022, Deutsche Bundesbank.
    17. Warwick McKibbin & Adele Morris & Peter Wilcoxen, 2014. "A Proposal to Integrate Price Mechanisms into International Climate Negotiations," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(3), pages 600-608, September.
    18. Chen, Jiandong & Huang, Shasha & Shen, Zhiyang & Song, Malin & Zhu, Zunhong, 2022. "Impact of sulfur dioxide emissions trading pilot scheme on pollution emissions intensity: A study based on the synthetic control method," Energy Policy, Elsevier, vol. 161(C).
    19. Hofmann, Elisa & Kyriacou, Lucas & Schmidt, Klaus M., 2021. "A Model United Nations Experiment on Climate Negotiations," Rationality and Competition Discussion Paper Series 266, CRC TRR 190 Rationality and Competition.
    20. Wei, Yanfeng & Zhang, Liguo & Guo, Xiaoying & Yang, Ting, 2021. "A theoretical and simulation analysis on the power of the frequency domain causality test," Statistics & Probability Letters, Elsevier, vol. 170(C).

    More about this item

    Keywords

    Granger causality ; Spectral analysis ; Climate policy ; Carbon tax;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ajf:louvlf:2022005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Séverine De Visscher (email available below). General contact details of provider: https://edirc.repec.org/data/lfuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.