IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/13944.html
   My bibliography  Save this book chapter

Impacts of Climate Change and Extreme Weather on US Agricultural Productivity: Evidence and Projection

In: Agricultural Productivity and Producer Behavior

Author

Listed:
  • Sun Ling Wang
  • Eldon Ball
  • Richard Nehring
  • Ryan Williams
  • Truong Chau

Abstract

This paper employs a stochastic frontier approach to examine how climate change and extreme weather affect U.S. agricultural productivity using 1940-1970 historical weather data (mean and variation) as the norm. We have four major findings. First, using temperature humidity index (THI) load and Oury index for the period 1960-2010 we find each state has experienced different patterns of climate change in the past half century, with some states incurring drier and warmer conditions than others. Second, the higher the THI load (more heat waves) and the lower the Oury index (much drier) will tend to lower a state’s productivity. Third, the impacts of THI load shock and Oury index shock variables (deviations from historical norm fluctuations) on productivity are more robust than the level of THI and Oury index variables across specifications. Fourth, we project potential impacts of climate change and extreme weather on U.S. regional productivity based on the estimates. We find that the same degree changes in temperature or precipitation will have uneven impacts on regional productivities, with Delta, Northeast, and Southeast regions incurring much greater effects than other regions, using 2000-2010 as the reference period.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sun Ling Wang & Eldon Ball & Richard Nehring & Ryan Williams & Truong Chau, 2018. "Impacts of Climate Change and Extreme Weather on US Agricultural Productivity: Evidence and Projection," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 41-75, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:13944
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c13944.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Sun Ling & Heisey, Paul & Schimmelpfennig, David & Ball, Eldon, 2015. "Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers," Economic Research Report 207954, United States Department of Agriculture, Economic Research Service.
    2. Paltasingh, Kirtti Ranjan & Goyari, Phanindra & Mishra, R.K., 2012. "Measuring Weather Impact on Crop Yield Using Aridity Index: Evidence from Odisha," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 25(2).
    3. Jikun Huang & Yangjie Wang & Jinxia Wang, 2015. "Farmers' Adaptation to Extreme Weather Events through Farm Management and Its Impacts on the Mean and Risk of Rice Yield in China," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(2), pages 602-617.
    4. Nigel Key & Stacy Sneeringer, 2014. "Potential Effects of Climate Change on the Productivity of U.S. Dairies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 1136-1156.
    5. Nicholas E. Rada & Steven T. Buccola & Keith O. Fuglie, 2010. "Government Policy and Agricultural Productivity in Indonesia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 863-880.
    6. Huffman, Wallace, 2009. "Measuring Public Agricultural Research Capital and Its Contribution to State Agricultural Productivity," Staff General Research Papers Archive 13123, Iowa State University, Department of Economics.
    7. Lambert, David K. & Gong, Jian, 2010. "Dynamic Adjustment of U.S. Agriculture to Energy Price Changes," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(2), pages 289-301, May.
    8. W.J.R. Alexander & F. Bailey, 2007. "Solar Activity and Climate Change—A Summary," Energy & Environment, , vol. 18(6), pages 801-804, November.
    9. Malcolm, Scott A. & Marshall, Elizabeth P. & Aillery, Marcel P. & Heisey, Paul W. & Livingston, Michael J. & Day-Rubenstein, Kelly A., 2012. "Agricultural Adaptation to a Changing Climate: Economic and Environmental Implications Vary by U.S. Region," Economic Research Report 127734, United States Department of Agriculture, Economic Research Service.
    10. Collins, Julie, 2007. "Climate Change and Emissions Trading (Power Point)," 2007 Seminar, August 24, 2007, Wellington, New Zealand 97617, New Zealand Agricultural and Resource Economics Society.
    11. Bernard Oury, 1965. "Allowing for Weather in Crop Production Model Building," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(2), pages 270-283.
    12. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    13. Sachs, Jeffrey D & Warner, Andrew M, 1997. "Sources of Slow Growth in African Economies," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 6(3), pages 335-376, October.
    14. Kim, Kwansoo & Chavas, Jean-Paul, 2003. "Technological change and risk management: an application to the economics of corn production," Agricultural Economics, Blackwell, vol. 29(2), pages 125-142, October.
    15. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Witsanu Attavanich & Sommarat Chantarat & Jirath Chenphuengpawn & Phumsith Mahasuweerachai & Kannika Thampanishvong, 2019. "Farms, Farmers and Farming: A Perspective through Data and Behavioral Insights," PIER Discussion Papers 122, Puey Ungphakorn Institute for Economic Research, revised Dec 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sun Ling & Newton, Doris J., 2015. "Productivity and Efficiency of U.S. Field Crop Farms: A Look at Farm Size and Operator’s Gender," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205344, Agricultural and Applied Economics Association.
    2. Ashok K. Mishra & Saleem Shaik & Aditya R. Khanal & Subir Bairagi, 2018. "Contract farming and technical efficiency: Evidence from low†value and high†value crops in Nepal," Agribusiness, John Wiley & Sons, Ltd., vol. 34(2), pages 426-440, March.
    3. Wang, Sun Ling & Ball, Eldon & Nehring, Richard & Williams, Ryan & Chau, Truong, 2014. "Impacts of Climate Change and Extreme Weather on U.S. Agricultural Productivity Growth," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 177170, Agricultural and Applied Economics Association.
    4. Uttam Khanal & Clevo Wilson & Boon Lee & Viet-Ngu Hoang, 2018. "Do climate change adaptation practices improve technical efficiency of smallholder farmers? Evidence from Nepal," Climatic Change, Springer, vol. 147(3), pages 507-521, April.
    5. Asfaw, Solomon & Cattaneo, Andrea & Pallante, Giacomo & Palma, Alessandro, 2017. "Improving the efficiency targeting of Malawi's farm input subsidy programme: Big pain, small gain?," Food Policy, Elsevier, vol. 73(C), pages 104-118.
    6. Astill, G. & Sabasi, D. & Gwatipedza, J., 2018. "Direct Marketing Strategies and Farmers’ Technical Efficiency in U.S. Agriculture," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275917, International Association of Agricultural Economists.
    7. Key, Nigel D. & Sneeringer, Stacy & Marquardt, David, 2014. "Climate Change, Heat Stress, and U.S. Dairy Production," Economic Research Report 186731, United States Department of Agriculture, Economic Research Service.
    8. Tom Kompas & Tuong Nhu Che & R. Quentin Grafton, 2004. "Technical efficiency effects of input controls: evidence from Australia's banana prawn fishery," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1631-1641.
    9. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    10. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    11. Fofack, Hippolyte, 2008. "Technology trap and poverty trap in Sub-Saharan Africa," Policy Research Working Paper Series 4582, The World Bank.
    12. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    13. Khanal, Aditya & Koirala, Krishna & Regmi, Madhav, 2016. "Do Financial Constraints Affect Production Efficiency in Drought Prone Areas? A Case from Indonesian Rice Growers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230087, Southern Agricultural Economics Association.
    14. Firna Varina & Sri Hartoyo & Nunung Kusnadi & Amzul Rifin, 2020. "The Determinants of Technical Efficiency of Oil Palm Smallholders in Indonesia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 89-93.
    15. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    16. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    17. Noel Uri, 2003. "The Effect of Incentive Regulation in Telecommunications in the United States," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(2), pages 169-191, May.
    18. Fabiana Rocha & Igor Viveiros Souza, 2007. "Reajuste De Preços Na Indústria Farmacêutica Brasileira E O Fator X: Uma Avaliação Usando O Método De Fronteiras Estocásticas," Anais do XXXV Encontro Nacional de Economia [Proceedings of the 35th Brazilian Economics Meeting] 041, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    19. Oleg Badunenko & Michael Fritsch & Andreas Stephan, 2006. "What Determines the Technical Efficiency of a Firm? The Importance of Industry, Location, and Size," Jenaer Schriften zur Wirtschaftswissenschaft (Expired!) 33/2006, Friedrich-Schiller-Universität Jena, Wirtschaftswissenschaftliche Fakultät.
    20. Kangile, Rajabu Joseph, 2015. "Efficiency In Production By Smallholder Rice Farmers Under Cooperative Irrigation Schemes In Pwani And Morogoro Regions, Tanzania," Research Theses 265681, Collaborative Masters Program in Agricultural and Applied Economics.

    More about this item

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:13944. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.