IDEAS home Printed from https://ideas.repec.org/f/pna602.html
   My authors  Follow this author

Teruo Nakatsuma

Personal Details

First Name:Teruo
Middle Name:
Last Name:Nakatsuma
Suffix:
RePEc Short-ID:pna602
[This author has chosen not to make the email address public]

Affiliation

Faculty of Economics
Keio University

Tokyo, Japan
http://www.econ.keio.ac.jp/

: 81-3-3453-4511

2-15-45, Mita, Minato-ku, Tokyo 108-8345
RePEc:edi:fekeijp (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
  2. Teruo Nakatsuma, 1999. "Bayesian Analysis of the Convergence Hypothesis in Economic Drowth: A Markov Approach," Discussion Paper Series a368, Institute of Economic Research, Hitotsubashi University.
  3. Teruo Nakatsuma & Hiroki Tsurumi, 1996. "ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test," Departmental Working Papers 199619, Rutgers University, Department of Economics.

Articles

  1. Kenji Kamizono & Takeaki Kariya & Regina Liu & Teruo Nakatsuma, 2004. "A New Control Variate Estimator for an Asian Option," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 143-160, June.
  2. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
  3. Teruo Nakatsuma & Hiroki Tsurumi, 1999. "Bayesian Estimation of ARMA-GARCH Model of Weekly Foreign Exchange Rates," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 71-84, January.
  4. Nakatsuma Teruo, 1998. "A Markov-Chain Sampling Algorithm for GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-13, July.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Teruo Nakatsuma & Hiroki Tsurumi, 1996. "ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test," Departmental Working Papers 199619, Rutgers University, Department of Economics.

    Cited by:

    1. Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011. "Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?," MPRA Paper 28259, University Library of Munich, Germany.
    2. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
    3. Hoogerheide, Lennart F. & Ardia, David & Corré, Nienke, 2012. "Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?," Economics Letters, Elsevier, vol. 116(3), pages 322-325.

Articles

  1. Kenji Kamizono & Takeaki Kariya & Regina Liu & Teruo Nakatsuma, 2004. "A New Control Variate Estimator for an Asian Option," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(2), pages 143-160, June.

    Cited by:

    1. Takahiko Fujita & Masahiro Ishii, 2010. "Valuation of a Repriceable Executive Stock Option," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(1), pages 1-18, March.

  2. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.

    Cited by:

    1. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    2. Sylvia Kaufmann & Sylvia Frühwirth‐Schnatter, 2002. "Bayesian analysis of switching ARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(4), pages 425-458, July.
    3. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    4. Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
    5. Hyun Kook Shin & Byoung Hark Yoo, 2012. "The Volatility Of The Won-Dollar Exchange Rate During The 2008-9 Crisis," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 37(4), pages 61-77, December.
    6. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    7. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    8. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    9. Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
    10. Stanislav Radchenko, 2004. "Oil price volatility and the asymmetric response of gasoline prices to oil price increases and decreases," Industrial Organization 0408001, University Library of Munich, Germany.
    11. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    12. Murat Midilic, 2016. "Estimation Of Star-Garch Models With Iteratively Weighted Least Squares," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/918, Ghent University, Faculty of Economics and Business Administration.
    13. Kim, Chang-Jin & Kim, Jaeho, 2013. "Bayesian Inference in Regime-Switching ARMA Models with Absorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks," MPRA Paper 51117, University Library of Munich, Germany.
    14. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.
    15. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    16. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    17. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    18. Lanne, Markku & Luoto, Jani, 2007. "Robustness of the Risk-Return Relationship in the U.S. Stock Market," MPRA Paper 3879, University Library of Munich, Germany.
    19. Neil Shephard & Gabriele Fiorentini & Enrique Sentana, 2003. "Likelihood-based estimation of latent generalised ARCH structures," FMG Discussion Papers dp453, Financial Markets Group.
    20. David Ardia, 2009. "Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
    21. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    22. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    23. Tsiaplias, Sarantis, 2008. "Factor estimation using MCMC-based Kalman filter methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 344-353, December.
    24. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
    25. Oleg Korenok & Bruce Mizrach, 2004. "The Microeconomics of Macroeconomic Asymmetries: Sectoral Driving Forces and Firm Level Characteristics," Computing in Economics and Finance 2004 266, Society for Computational Economics.
    26. Teruo Nakatsuma & Hiroki Tsurumi, 1999. "Bayesian Estimation of ARMA-GARCH Model of Weekly Foreign Exchange Rates," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 71-84, January.
    27. Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
    28. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    29. Manabu Asai & Michael McAleer, 2018. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Tinbergen Institute Discussion Papers 18-005/III, Tinbergen Institute.
    30. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    31. Deschamps, Philippe J., 2011. "Bayesian Estimation of Generalized Hyperbolic Skewed Student GARCH Models," DQE Working Papers 16, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 09 Jun 2012.
    32. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    33. Sarantis Tsiaplias, 2009. "Examining Feedback, Momentum and Overreaction in National Equity Markets," Melbourne Institute Working Paper Series wp2009n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    34. Sarantis Tsiaplias, 2007. "A Metropolis-in-Gibbs Sampler for Estimating Equity Market Factors," Melbourne Institute Working Paper Series wp2007n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    35. Chen, Cathy W.S. & Yu, Tiffany H.K., 2005. "Long-term dependence with asymmetric conditional heteroscedasticity in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 413-424.
    36. Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
    37. Eiji Minemura, 2006. "An Interest-rate Model Analysis Based on Data Augmentation Bayesian Forecasting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1085-1104.
    38. Ting Ting Chen & Tetsuya Takaishi, 2013. "Empirical Study of the GARCH model with Rational Errors," Papers 1312.7057, arXiv.org.
    39. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478, arXiv.org.
    40. Teruo Nakatsuma & Hiroki Tsurumi, 1996. "ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test," Departmental Working Papers 199619, Rutgers University, Department of Economics.
    41. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    42. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    43. Yoo Byoung Hark, 2010. "Estimating the Term Premium by a Markov Switching Model with ARMA-GARCH Errors," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-20, March.

  3. Teruo Nakatsuma & Hiroki Tsurumi, 1999. "Bayesian Estimation of ARMA-GARCH Model of Weekly Foreign Exchange Rates," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 71-84, January.

    Cited by:

    1. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    2. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.

  4. Nakatsuma Teruo, 1998. "A Markov-Chain Sampling Algorithm for GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-13, July.

    Cited by:

    1. Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
    2. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    3. Jan Henneke & Svetlozar Rachev & Frank Fabozzi & Metodi Nikolov, 2011. "MCMC-based estimation of Markov Switching ARMA-GARCH models," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 259-271.
    4. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    5. Oscar Andrés Espinosa Acuña & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 017172, Universidad del Norte.
    6. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    7. David Ardia & Lennart F. Hoogerheide, 2010. "Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations," Tinbergen Institute Discussion Papers 10-045/4, Tinbergen Institute.
    8. Sarantis Tsiaplias, 2007. "A Metropolis-in-Gibbs Sampler for Estimating Equity Market Factors," Melbourne Institute Working Paper Series wp2007n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    9. Romero, Eva & Rodríguez Bernal, M. T. & Marín Díazaraque, Juan Miguel, 2013. "Data cloning estimation of GARCH and COGARCH models," DES - Working Papers. Statistics and Econometrics. WS ws132723, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Oscar Andrés Espinosa Acuña & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 017147, Universidad del Norte.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-FMK: Financial Markets (1) 2016-05-28

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Teruo Nakatsuma should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.