IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0901.0992.html
   My bibliography  Save this paper

An Adaptive Markov Chain Monte Carlo Method for GARCH Model

Author

Listed:
  • Tetsuya Takaishi

Abstract

We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC metho d itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded that the adaptive construction method is very efficient and works well for the MCMC simulations of the GARCH model.

Suggested Citation

  • Tetsuya Takaishi, 2009. "An Adaptive Markov Chain Monte Carlo Method for GARCH Model," Papers 0901.0992, arXiv.org.
  • Handle: RePEc:arx:papers:0901.0992
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0901.0992
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    2. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    3. repec:wsi:ijmpcx:v:13:y:2002:i:01:n:s0129183102003000 is not listed on IDEAS
    4. K. Sznajd-Weron & R. Weron, 2002. "A Simple Model Of Price Formation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 115-123.
    5. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
    9. Tetsuya Takaishi, 2005. "Simulations of financial markets in a Potts-like model," Papers cond-mat/0503156, arXiv.org.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised Jul 2017.
    2. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
    3. Ting Ting Chen & Tetsuya Takaishi, 2013. "Empirical Study of the GARCH model with Rational Errors," Papers 1312.7057, arXiv.org.
    4. Tetsuya Takaishi, 2013. "Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm," Papers 1305.3184, arXiv.org.
    5. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.0992. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.