IDEAS home Printed from https://ideas.repec.org/f/pde357.html
   My authors  Follow this author

Giovanni De Luca

Personal Details

First Name:Giovanni
Middle Name:
Last Name:De Luca
Suffix:
RePEc Short-ID:pde357
http://www.economia.uniparthenope.it/siti_docenti/Deluca/home.html

Affiliation

Dipartimento di Studi Aziendali e Quantitativi
Università degli Studi di Napoli - "Parthenope"

Napoli, Italy
http://www.disaq.uniparthenope.it/

:

Via Generale Parisi, 13 - 80132 Napoli
RePEc:edi:aqnavit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. De Luca, Giovanni & Zuccolotto, Paola, 2013. "A Conditional Value-at-Risk Based Portfolio Selection With Dynamic Tail Dependence Clustering," MPRA Paper 50129, University Library of Munich, Germany.
  2. Giovanni De Luca & Giampiero Gallo, 2010. "A Time-varying Mixing Multiplicative Error Model for Realized Volatility," Econometrics Working Papers Archive wp2010_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  3. Giovanni De Luca & Giampiero M. Gallo, 2005. "Time-varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometrics Working Papers Archive wp2005_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".

Articles

  1. Giovanni De Luca & Nicola Loperfido, 2015. "Modelling multivariate skewness in financial returns: a SGARCH approach," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1113-1131, November.
  2. Giovanni De Luca & Alfonso Carfora, 2014. "Predicting U.S. recessions through a combination of probability forecasts," Empirical Economics, Springer, vol. 46(1), pages 127-144, February.
  3. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
  4. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
  5. Giovanni De Luca & Giorgia Rivieccio, 2009. "Archimedean copulae for risk measurement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 907-924.
  6. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
  7. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
  8. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.
  9. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. De Luca, Giovanni & Zuccolotto, Paola, 2013. "A Conditional Value-at-Risk Based Portfolio Selection With Dynamic Tail Dependence Clustering," MPRA Paper 50129, University Library of Munich, Germany.

    Cited by:

    1. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.

  2. Giovanni De Luca & Giampiero Gallo, 2010. "A Time-varying Mixing Multiplicative Error Model for Realized Volatility," Econometrics Working Papers Archive wp2010_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".

    Cited by:

    1. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.

  3. Giovanni De Luca & Giampiero M. Gallo, 2005. "Time-varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometrics Working Papers Archive wp2005_11, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".

    Cited by:

    1. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    3. Giovanni De Luca & Giampiero Gallo, 2010. "A Time-varying Mixing Multiplicative Error Model for Realized Volatility," Econometrics Working Papers Archive wp2010_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    4. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 8(1), pages 1-20, March.
    5. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, Open Access Journal, vol. 5(2), pages 1-24, April.
    6. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper series 29_13, Rimini Centre for Economic Analysis.
    7. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    8. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    9. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(4), pages 237-273, December.
    10. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.

Articles

  1. Giovanni De Luca & Nicola Loperfido, 2015. "Modelling multivariate skewness in financial returns: a SGARCH approach," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1113-1131, November.

    Cited by:

    1. Bodnar, Taras & Mazur, Stepan & Parolya, Nestor, 2017. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix-variate location mixture of normal distributions," Working Papers 2017:5, Örebro University, School of Business.
    2. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.

  2. Giovanni De Luca & Alfonso Carfora, 2014. "Predicting U.S. recessions through a combination of probability forecasts," Empirical Economics, Springer, vol. 46(1), pages 127-144, February.

    Cited by:

    1. Kajal Lahiri & Liu Yang, 2015. "A Non-linear Forecast Combination Procedure for Binary Outcomes," CESifo Working Paper Series 5175, CESifo Group Munich.
    2. Pauwels, Laurent & Vasnev, Andrey, 2013. "Forecast combination for U.S. recessions with real-time data," Working Papers 02/2013, University of Sydney Business School, Discipline of Business Analytics.

  3. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.

    Cited by:

    1. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    2. De Luca, Giovanni & Zuccolotto, Paola, 2013. "A Conditional Value-at-Risk Based Portfolio Selection With Dynamic Tail Dependence Clustering," MPRA Paper 50129, University Library of Munich, Germany.
    3. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    4. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    5. Borja Lafuente-Rego & José A. Vilar, 2016. "Clustering of time series using quantile autocovariances," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(3), pages 391-415, September.
    6. Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
    7. De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
    8. Giovanni De Luca & Paola Zuccolotto, 2017. "Dynamic tail dependence clustering of financial time series," Statistical Papers, Springer, vol. 58(3), pages 641-657, September.

  4. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    See citations under working paper version above.
  5. Giovanni De Luca & Giorgia Rivieccio, 2009. "Archimedean copulae for risk measurement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 907-924.

    Cited by:

    1. Frederik Michiels & Ann De Schepper, 2012. "How to improve the fit of Archimedean copulas by means of transforms," Statistical Papers, Springer, vol. 53(2), pages 345-355, May.

  6. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.

    Cited by:

    1. Bhatti, Chad R., 2009. "On the interday homogeneity in the intraday rate of trading," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2250-2257.
    2. Iordanis Kalaitzoglou & Boulis Maher Ibrahim, 2010. "Does Order Flow in the European Carbon Allowances Market Reveal Information?," CFI Discussion Papers 1003, Centre for Finance and Investment, Heriot Watt University.
    3. Andres, Philipp, 2014. "Maximum likelihood estimates for positive valued dynamic score models; The DySco package," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 34-42.
    4. Helton Saulo & Jeremias Leão, 2017. "On log-symmetric duration models applied to high frequency financial data," Economics Bulletin, AccessEcon, vol. 37(2), pages 1089-1097.
    5. COSMA, Antonio & GALLI, Fausto, 2006. "A nonparametric ACD model," CORE Discussion Papers 2006067, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    7. Chen, Cathy W.S. & Gerlach, Richard & Lin, Edward M.H., 2008. "Volatility forecasting using threshold heteroskedastic models of the intra-day range," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2990-3010, February.
    8. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 8(1), pages 1-20, March.
    9. Bhatti, Chad R., 2009. "Intraday trade and quote dynamics: A Cox regression analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2240-2249.
    10. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2010. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," SFB 649 Discussion Papers SFB649DP2010-055, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 6(4), pages 237-273, December.
    12. Kalaitzoglou, Iordanis & Ibrahim, Boulis M., 2013. "Does order flow in the European Carbon Futures Market reveal information?," Journal of Financial Markets, Elsevier, vol. 16(3), pages 604-635.

  7. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.

    Cited by:

    1. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Zhongxian Men & Tony S. Wirjanto & Adam W. Kolkiewicz, 2013. "Bayesian Inference of Multiscale Stochastic Conditional Duration Models," Working Paper series 63_13, Rimini Centre for Economic Analysis.
    3. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    4. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    5. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    6. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Australasian Meetings 272, Econometric Society.
    7. Dungey, Mardi & Jeyasreedharan, Nagaratnam & Li, Tuo, 2010. "Modelling the Time Between Trades in the After-Hours Electronic Equity Futures Market," Working Papers 10451, University of Tasmania, Tasmanian School of Business and Economics, revised 30 May 2012.
    8. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 594-616.
    9. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2010. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," SFB 649 Discussion Papers SFB649DP2010-055, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    10. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper series 29_13, Rimini Centre for Economic Analysis.
    11. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    12. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    13. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Far Eastern Meetings 730, Econometric Society.
    14. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.

  8. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.

    Cited by:

    1. Luc Bauwens & Nikolaus Hautsch, 2007. "Modelling Financial High Frequency Data Using Point Processes," SFB 649 Discussion Papers SFB649DP2007-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
    3. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    4. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    5. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.

  9. Bartolucci, F. & De Luca, G., 2003. "Likelihood-based inference for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 445-449, March.

    Cited by:

    1. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    2. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    3. Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
    4. Lopes Moreira Da Veiga, María Helena & Ruiz Ortega, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    6. Silvia Cagnone & Francesco Bartolucci, 2017. "Adaptive Quadrature for Maximum Likelihood Estimation of a Class of Dynamic Latent Variable Models," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 599-622, April.
    7. Cagnone, Silvia & Bartolucci, Francesco, 2013. "Adaptive quadrature for likelihood inference on dynamic latent variable models for time-series and panel data," MPRA Paper 51037, University Library of Munich, Germany.
    8. Langrock, Roland & MacDonald, Iain L. & Zucchini, Walter, 2012. "Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 19(1), pages 147-161.
    9. Francesco Bartolucci & Silvia Bacci & Fulvia Pennoni, 2014. "Longitudinal analysis of self-reported health status by mixture latent auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 267-288, February.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (2) 2007-01-28 2010-05-08
  2. NEP-ETS: Econometric Time Series (2) 2007-01-28 2010-05-08
  3. NEP-FOR: Forecasting (1) 2010-05-08
  4. NEP-MST: Market Microstructure (1) 2007-01-28
  5. NEP-ORE: Operations Research (1) 2010-05-08
  6. NEP-RMG: Risk Management (1) 2013-10-02

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Giovanni De Luca should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.