IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v299y2021i1d10.1007_s10479-019-03284-1.html
   My bibliography  Save this article

Trimmed fuzzy clustering of financial time series based on dynamic time warping

Author

Listed:
  • Pierpaolo D’Urso

    (Sapienza - University of Rome)

  • Livia Giovanni

    (LUISS Guido Carli)

  • Riccardo Massari

    (Sapienza - University of Rome)

Abstract

In finance, cluster analysis is a tool particularly useful for classifying stock market multivariate time series data related to daily returns, volatility daily stocks returns, commodity prices, volume trading, index, enhanced index tracking portfolio, and so on. In the literature, following different methodological approaches, several clustering methods have been proposed for clustering multivariate time series. In this paper by adopting a fuzzy approach and using the Partitioning Around Medoids strategy, we suggest to cluster multivariate financial time series by considering the dynamic time warping distance. In particular, we proposed a robust clustering method capable to neutralize the negative effects of possible outliers in the clustering process. The clustering method achieves its robustness by adopting a suitable trimming procedure to identify multivariate financial time series more distant from the bulk of data. The proposed clustering method is applied to the stocks composing the FTSE MIB index to identify common time patterns and possible outliers.

Suggested Citation

  • Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
  • Handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03284-1
    DOI: 10.1007/s10479-019-03284-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03284-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03284-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    2. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
    3. Basalto, Nicolas & Bellotti, Roberto & De Carlo, Francesco & Facchi, Paolo & Pantaleo, Ester & Pascazio, Saverio, 2007. "Hausdorff clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 635-644.
    4. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    5. Iglesias, Emma M., 2015. "Value at Risk and expected shortfall of firms in the main European Union stock market indexes: A detailed analysis by economic sectors and geographical situation," Economic Modelling, Elsevier, vol. 50(C), pages 1-8.
    6. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    7. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    8. Liu, Qingfu & Tse, Yiuman, 2017. "Overnight returns of stock indexes: Evidence from ETFs and futures," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 440-451.
    9. Rechenthin, Michael & Street, W. Nick & Srinivasan, Padmini, 2013. "Stock chatter: Using stock sentiment to predict price direction," Algorithmic Finance, IOS Press, vol. 2(3-4), pages 169-196.
    10. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    11. Jafar Rahmanishamsi & Ali Dolati & Masoudreza R. Aghabozorgi, 2018. "A Copula Based ICA Algorithm and Its Application to Time Series Clustering," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 230-249, July.
    12. Dose, Christian & Cincotti, Silvano, 2005. "Clustering of financial time series with application to index and enhanced index tracking portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 145-151.
    13. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
    14. Carlo Piccardi & Lisa Calatroni & Fabio Bertoni, 2011. "Clustering Financial Time Series By Network Community Analysis," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 35-50.
    15. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    16. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    17. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    18. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    19. Pattarin, Francesco & Paterlini, Sandra & Minerva, Tommaso, 2004. "Clustering financial time series: an application to mutual funds style analysis," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 353-372, September.
    20. Chen Yang & Wenjun Jiang & Jiang Wu & Xin Liu & Zhichuan Li, 2018. "Clustering of financial instruments using jump tail dependence coefficient," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 491-513, August.
    21. Chang, Shu-Lien & Chien, Cheng-Yi & Lee, Hsiu-Chuan & Lin, Ching, 2018. "Historical high and stock index returns: Application of the regression kink model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 48-63.
    22. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    23. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    24. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    25. Iglesias, Emma M., 2015. "Value at Risk of the main stock market indexes in the European Union (2000–2012)," Journal of Policy Modeling, Elsevier, vol. 37(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
    2. Li, Bo & Lu, Ziqiang, 2023. "Uncertain random enhanced index tracking for portfolio selection with parameter estimation and hypothesis test," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    4. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    5. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    6. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    7. Giovanni De Luca & Paola Zuccolotto, 2021. "Regime dependent interconnectedness among fuzzy clusters of financial time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 315-336, June.
    8. De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
    9. Antonis A. Michis, 2021. "Wavelet Multidimensional Scaling Analysis of European Economic Sentiment Indicators," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 443-480, October.
    10. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    11. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    13. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    14. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    15. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
    16. Syed Kumail Abbas Rizvi & Nawazish Mirza & Bushra Naqvi & Birjees Rahat, 0. "Covid-19 and asset management in EU: a preliminary assessment of performance and investment styles," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-11.
    17. Naimoli, Antonio & Gerlach, Richard & Storti, Giuseppe, 2022. "Improving the accuracy of tail risk forecasting models by combining several realized volatility estimators," Economic Modelling, Elsevier, vol. 107(C).
    18. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    19. Kao, Lie-Jane, 2015. "A portfolio-invariant capital allocation scheme penalizing concentration risk," Economic Modelling, Elsevier, vol. 51(C), pages 560-570.
    20. Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03284-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.