IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v47y2004i2p353-372.html
   My bibliography  Save this article

Clustering financial time series: an application to mutual funds style analysis

Author

Listed:
  • Pattarin, Francesco
  • Paterlini, Sandra
  • Minerva, Tommaso

Abstract

No abstract is available for this item.

Suggested Citation

  • Pattarin, Francesco & Paterlini, Sandra & Minerva, Tommaso, 2004. "Clustering financial time series: an application to mutual funds style analysis," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 353-372, September.
  • Handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:353-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00278-0
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chatterjee, Sangit & Laudato, Matthew & Lynch, Lucy A., 1996. "Genetic algorithms and their statistical applications: an introduction," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 633-651, October.
    2. Tae-Hwan Kim, 2005. "Asymptotic and Bayesian Confidence Intervals for Sharpe-Style Weights," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 315-343.
    3. Brown, Stephen J. & Goetzmann, William N., 1997. "Mutual fund styles," Journal of Financial Economics, Elsevier, vol. 43(3), pages 373-399, March.
    4. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Zhang & Dietmar Maringer, 2010. "Asset Allocation under Hierarchical Clustering," Working Papers 036, COMISEF.
    2. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    3. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    4. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    5. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    6. Kathryn Holmes & Robert Faff & Iain Clacher, 2010. "Style analysis and dominant index timing: an application to Australian multi-sector managed funds," Applied Financial Economics, Taylor & Francis Journals, vol. 20(4), pages 293-301.
    7. Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
    8. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
    9. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    10. De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
    11. Stephanos Papadamou & Nikolaos A. Kyriazis & Lydia Mermigka, 2017. "Japanese Mutual Funds before and after the Crisis Outburst: A Style- and Performance-Analysis," International Journal of Financial Studies, MDPI, Open Access Journal, vol. 5(1), pages 1-20, March.
    12. Bracewell Paul J & Farhadieh Farinaz & Jowett Clint A & Forbes Don G. R. & Meyer Denny H, 2009. "Was Bradman Denied His Prime?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(4), pages 1-26, October.
    13. Dhagash Mehta & Dhruv Desai & Jithin Pradeep, 2020. "Machine Learning Fund Categorizations," Papers 2006.00123, arXiv.org.
    14. Pinar OKAN GOKTEN & Furkan BASER & Soner GOKTEN, 2017. "Using fuzzy c-means clustering algorithm in financial health scoring," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 15(147), pages 385-385.
    15. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    16. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Takaya Fukui & Seisho Sato & Akihiko Takahashi, 2017. "Style analysis with particle filtering and generalized simulated annealing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    18. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    19. F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    20. Juan C. Duque & Xinyue Ye & David C. Folch, 2015. "spMorph: An exploratory space-time analysis tool for describing processes of spatial redistribution," Papers in Regional Science, Wiley Blackwell, vol. 94(3), pages 629-651, August.
    21. Marianna Lyra, 2010. "Heuristic Strategies in Finance – An Overview," Working Papers 045, COMISEF.
    22. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    23. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
    24. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    25. Firat, Aykut & Chatterjee, Sangit & Yilmaz, Mustafa, 2007. "Genetic clustering of social networks using random walks," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6285-6294, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:353-372. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.