IDEAS home Printed from https://ideas.repec.org/p/cma/wpaper/0904.html
   My bibliography  Save this paper

Clustering financial time series with variance ratio statistics

Author

Listed:
  • Joao A. Bastos

    (CEMAPRE, School of Economics and Management (ISEG), Technical University of Lisbon)

  • Jorge Caiado

    (CEMAPRE, School of Economics and Management (ISEG), Technical University of Lisbon)

Abstract

This study introduces a new distance measure for clustering financial time series based on variance ratio test statistics. The proposed metric attempts to assess the level of interdependence of time series from the point of view of return predictability. Simulation results show that this metric aggregates better time series according to their serial dependence structure than a metric based on the sample autocorrelations. An empirical application of this approach to international stock market returns is presented. The results suggest that this metric discriminates reasonably well stock markets according to size and level of development. Furthermore, despite the substantial evolution of individual variance ratio statistics, the clustering pattern remains fairly stable across different time periods.

Suggested Citation

  • Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  • Handle: RePEc:cma:wpaper:0904
    as

    Download full text from publisher

    File URL: http://cemapre.iseg.utl.pt/RePEc/papers/WP0904.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    3. Chow, K. Victor & Denning, Karen C., 1993. "A simple multiple variance ratio test," Journal of Econometrics, Elsevier, vol. 58(3), pages 385-401, August.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Maharaj, E.A., 1994. "A Significance Test for Classifying ARMA Models," Monash Econometrics and Business Statistics Working Papers 18/94, Monash University, Department of Econometrics and Business Statistics.
    6. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    7. Lo, Andrew W. & MacKinlay, A. Craig, 1989. "The size and power of the variance ratio test in finite samples : A Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 40(2), pages 203-238, February.
    8. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    9. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    10. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
    11. Kim, E Han & Singal, Vijay, 2000. "Erratum [Stock Market Openings: Experience of Emerging Economies]," The Journal of Business, University of Chicago Press, vol. 73(4), October.
    12. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
    13. Lim, Kian-Ping & Kim, Jae H., 2011. "Trade openness and the informational efficiency of emerging stock markets," Economic Modelling, Elsevier, vol. 28(5), pages 2228-2238, September.
    14. Graham Smith, 2009. "Martingales in European emerging stock markets: Size, liquidity and market quality," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 249-262.
    15. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    16. John M. Griffin & Patrick J. Kelly & Federico Nardari, 2010. "Do Market Efficiency Measures Yield Correct Inferences? A Comparison of Developed and Emerging Markets," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3225-3277, August.
    17. Hoque, Hafiz A.A.B. & Kim, Jae H. & Pyun, Chong Soo, 2007. "A comparison of variance ratio tests of random walk: A case of Asian emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 16(4), pages 488-502.
    18. Kim, E Han & Singal, Vijay, 2000. "Stock Market Openings: Experience of Emerging Economies," The Journal of Business, University of Chicago Press, vol. 73(1), pages 25-66, January.
    19. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    20. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-017-2659-0 is not listed on IDEAS
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Feb 2019.
    3. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    4. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    5. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    6. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    7. Ekaterina Dorodnykh, 2013. "What Drives Stock Exchange Integration?," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Eastern Macedonia and Thrace Institute of Technology (EMATTECH), Kavala, Greece, vol. 6(2), pages 47-79, September.
    8. Galagedera, Don U.A., 2013. "A new perspective of equity market performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 333-357.

    More about this item

    Keywords

    Time series; Cluster analysis; Multidimensional scaling; Variance ratio test; International stock market;

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cma:wpaper:0904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lima) The email address of this maintainer does not seem to be valid anymore. Please ask Helena Lima to update the entry or send us the correct email address. General contact details of provider: http://edirc.repec.org/data/cmutlpt.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.