IDEAS home Printed from https://ideas.repec.org/f/pca349.html
   My authors  Follow this author

Jorge Caiado

Personal Details

First Name:Jorge
Middle Name:
Last Name:Caiado
Suffix:
RePEc Short-ID:pca349
http://pascal.iseg.utl.pt/~jcaiado
CEMAPRE, ISEG Rua do Quelhas, 6 1200 Lisboa Portugal

Affiliation

Centro de Matemática Aplicada à Previsão e Decisão Económica (CEMAPRE)
Research in Economics and Mathematics (REM)
Instituto Superior de Economia e Gestão (ISEG)
Universidade de Lisboa

Lisboa, Portugal
http://cemapre.iseg.ulisboa.pt/

: 21-3925876
21-3922882
na Rua do Quelha 6, 1200-781 Lisboa
RePEc:edi:cmutlpt (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. António Afonso, & Jorge Caiado, & Miguel St. Aubyn, 2015. "The macro impact of the Portuguese Constitutional Court decisions regarding the budgetary proposals of the Portuguese Budget Law (2012, 2013, 2014)," Working Papers Department of Economics 2015/06, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
  2. J. Augusto Felicio & Eduardo Couto & Jorge Caiado, 2013. "Human capital, social capital and organizational performance: A structural modeling approach," CEMAPRE Working Papers 1302, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  3. Luisa Carvalho & Teresa Costa & Jorge Caiado, 2012. "Determinants of innovation in a small open economy: A multidimensional perspective," CEMAPRE Working Papers 1201, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  4. Joao A. Bastos & Jorge Caiado, 2010. "Recurrence quantification analysis of global stock markets," CEMAPRE Working Papers 1006, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  5. Joao A. Bastos & Jorge Caiado, 2010. "The structure of international stock market returns," CEMAPRE Working Papers 1002, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  6. J. Augusto Felicio & Eduardo Couto & Jorge Caiado, 2009. "Interrelationships between human capital and social capital in small and medium sized firms: The effect of age and sector of activity," CEMAPRE Working Papers 0905, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  7. Antonio Samagaio & Eduardo Couto & Jorge Caiado, 2009. "Sporting, financial and stock market performance in English football: an empirical analysis of structural relationships," CEMAPRE Working Papers 0906, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  8. Jorge Caiado & Nuno Crato, 2009. "Identifying common dynamic features in stock returns," CEMAPRE Working Papers 0902, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  9. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
  10. Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  11. Jorge Caiado, 2009. "Performance of combined double seasonal univariate time series models for forecasting water demand," CEMAPRE Working Papers 0903, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.
  12. Caiado, Jorge & Crato, Nuno, 2008. "Identifying the evolution of stock markets stochastic structure after the euro," MPRA Paper 6609, University Library of Munich, Germany.
  13. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
  14. Caiado, Jorge, 2007. "Forecasting water consumption in Spain using univariate time series models," MPRA Paper 6610, University Library of Munich, Germany.
  15. Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.
  16. Caiado, Jorge & Crato, Nuno, 2007. "Identifying common spectral and asymmetric features in stock returns," MPRA Paper 6607, University Library of Munich, Germany.
  17. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Is there an identity within international stock market volatilities?," MPRA Paper 2069, University Library of Munich, Germany.
  18. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
  19. Caiado, Jorge & Vieira, Aníbal & Bonito, Ana & Reis, Carlos & Fernandes, Francisco, 2006. "Previsão da eficácia ofensiva do futebol profissional: Um caso Português," MPRA Paper 2185, University Library of Munich, Germany.
  20. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
  21. Caiado, Jorge, 2004. "Modelling and forecasting the volatility of the portuguese stock index PSI-20," MPRA Paper 2077, University Library of Munich, Germany.
  22. Caiado, Jorge & Madeira, Paulo, 2002. "Determinantes do desempenho académico nos cursos de contabilidade
    [Determinants of the academic performance in undergraduate courses of accounting]
    ," MPRA Paper 2199, University Library of Munich, Germany.

Articles

  1. Coelho do Vale, Rita & Verga Matos, Pedro & Caiado, Jorge, 2016. "The impact of private labels on consumer store loyalty: An integrative perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 28(C), pages 179-188.
  2. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
  3. Luísa Carvalho & Teresa Costa & Jorge Caiado, 2013. "Determinants of innovation in a small open economy: a multidimensional perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(3), pages 583-600, June.
  4. J. Augusto Felício & Eduardo Couto & Jorge Caiado, 2011. "Human capital and social capital in entrepreneurs and managers of small and medium enterprises," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 13(3), pages 395-420, June.
  5. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
  6. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
  7. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
  8. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(1), pages 3-21.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. J. Augusto Felicio & Eduardo Couto & Jorge Caiado, 2013. "Human capital, social capital and organizational performance: A structural modeling approach," CEMAPRE Working Papers 1302, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Andrea Rey-Martí & J. Augusto Felício & Ricardo Rodrigues, 2017. "Entrepreneurial attributes for success in the small hotel sector: a fuzzy-set QCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2085-2100, September.

  2. Luisa Carvalho & Teresa Costa & Jorge Caiado, 2012. "Determinants of innovation in a small open economy: A multidimensional perspective," CEMAPRE Working Papers 1201, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Juana Sanchez, 2014. "Innovation Output Choices And Characteristics Of Firms In The U.S," Working Papers 14-42, Center for Economic Studies, U.S. Census Bureau.
    2. Ye Seul Choi & Up Lim, 2017. "Contextual Factors Affecting the Innovation Performance of Manufacturing SMEs in Korea: A Structural Equation Modeling Approach," Sustainability, MDPI, Open Access Journal, vol. 9(7), pages 1-15, July.
    3. Egbetokun A. & Oluwatope O. & Adeyeye D. & Sanni M., 2014. "The role of industry and economic context in open innovation: Evidence from Nigeria," MERIT Working Papers 073, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    4. Sanchez, Juana, 2014. "Non-technological and Mixed Modes of Innovation in the United States. Evidence from the Business Research and Development and Innovation Survey, 2008-2011," MPRA Paper 58719, University Library of Munich, Germany.
    5. Michael Pearson & Ignazio Cabras, 2014. "Innovation And Connectivity In Northern European Technical Cooperation Networks," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-24.
    6. Egbetokun, Abiodun A., 2015. "Interactive learning and firm-level capabilities in latecomer settings: The Nigerian manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 231-241.

  3. Joao A. Bastos & Jorge Caiado, 2010. "Recurrence quantification analysis of global stock markets," CEMAPRE Working Papers 1006, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Marisa Faggini & Anna Parziale, 2016. "More than 20 years of chaos in economics," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 15(1), pages 53-69, June.
    2. Kiran Sharma & Shreyansh Shah & Anindya S. Chakrabarti & Anirban Chakraborti, 2016. "Sectoral co-movements in the Indian stock market: A mesoscopic network analysis," Papers 1607.05514, arXiv.org.
    3. B. Goswami & G. Ambika & N. Marwan & J. Kurths, 2011. "On interrelations of recurrences and connectivity trends between stock indices," Papers 1103.5189, arXiv.org.
    4. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
    5. Yao, Can-Zhong & Lin, Qing-Wen, 2017. "Recurrence plots analysis of the CNY exchange markets based on phase space reconstruction," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 584-596.
    6. Sergii Piskun & Oleksandr Piskun & Dmitry Chabanenko, 2011. "RQA Application for the Monitoring of Financial and Commodity markets state," Papers 1112.0297, arXiv.org.
    7. Sandoval, Leonidas Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Insper Working Papers wpe_319, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    8. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," ESTUDIOS GERENCIALES, UNIVERSIDAD ICESI, November.
    9. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    10. Goswami, B. & Ambika, G. & Marwan, N. & Kurths, J., 2012. "On interrelations of recurrences and connectivity trends between stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4364-4376.
    11. Vinodh Madhavan, 2014. "Investigating the nature of nonlinearity in Indian Exchange Traded Funds (ETFs)," Managerial Finance, Emerald Group Publishing, vol. 40(4), pages 395-415, March.

  4. Joao A. Bastos & Jorge Caiado, 2010. "The structure of international stock market returns," CEMAPRE Working Papers 1002, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Guglielmo Maria Caporale & Luis A. Gil-Alana & C. James Orlando, 2015. "Linkages between the US and European Stock Markets: A Fractional Cointegration Approach," CESifo Working Paper Series 5523, CESifo Group Munich.
    2. P., Srinivasan & M., Kalaivani, 2013. "Stock Market Linkages in Emerging Asia-Pacific Markets," MPRA Paper 45871, University Library of Munich, Germany.

  5. Antonio Samagaio & Eduardo Couto & Jorge Caiado, 2009. "Sporting, financial and stock market performance in English football: an empirical analysis of structural relationships," CEMAPRE Working Papers 0906, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Carmine Zoccali, 2012. "The Role Of Financial Indicators In The Life Of Italian Football Clubs," Rivista di Diritto ed Economia dello Sport, Centro di diritto e business dello Sport, vol. 7(3), pages 83-101, gennaio.

  6. Jorge Caiado & Nuno Crato, 2009. "Identifying common dynamic features in stock returns," CEMAPRE Working Papers 0902, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised May 2018.
    2. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    3. Galagedera, Don U.A., 2013. "A new perspective of equity market performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 333-357.

  7. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.

    Cited by:

    1. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    2. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    3. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
    4. E. Otranto, 2008. "Identifying Financial Time Series with Similar Dynamic Conditional Correlation," Working Paper CRENoS 200817, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    6. Caiado, Jorge & Crato, Nuno, 2009. "Identifying common dynamic features in stock returns," MPRA Paper 15241, University Library of Munich, Germany.
    7. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.

  8. Joao A. Bastos & Jorge Caiado, 2009. "Clustering financial time series with variance ratio statistics," CEMAPRE Working Papers 0904, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised May 2018.
    3. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    4. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    5. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    6. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    7. Ekaterina Dorodnykh, 2013. "What Drives Stock Exchange Integration?," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Eastern Macedonia and Thrace Institute of Technology (EMATTECH), Kavala, Greece, vol. 6(2), pages 47-79, September.
    8. Galagedera, Don U.A., 2013. "A new perspective of equity market performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 333-357.

  9. Jorge Caiado, 2009. "Performance of combined double seasonal univariate time series models for forecasting water demand," CEMAPRE Working Papers 0903, Centre for Applied Mathematics and Economics (CEMAPRE), School of Economics and Management (ISEG), Technical University of Lisbon.

    Cited by:

    1. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    2. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    3. Xiao-jun Wang & Jian-yun Zhang & Shahid Shamsuddin & Ru-lin Oyang & Tie-sheng Guan & Jian-guo Xue & Xu Zhang, 2017. "Impacts of climate variability and changes on domestic water use in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 595-608, April.

  10. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.

    Cited by:

    1. Caiado, Jorge & Crato, Nuno, 2008. "Identifying the evolution of stock markets stochastic structure after the euro," MPRA Paper 6609, University Library of Munich, Germany.
    2. Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.
    3. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Is there an identity within international stock market volatilities?," MPRA Paper 2069, University Library of Munich, Germany.

  11. Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.

    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised May 2018.
    2. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    3. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    4. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
    5. F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

  12. Caiado, Jorge, 2004. "Modelling and forecasting the volatility of the portuguese stock index PSI-20," MPRA Paper 2077, University Library of Munich, Germany.

    Cited by:

    1. Sergey SVESHNIKOV & Victor BOCHARNIKOV, 2009. "Eforecasting Financial Indexes With Model Of Composite Events Influence," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(3(9)_Fall).
    2. Yaya, OlaOluwa S. & Gil-Alana, Luis A., 2014. "The persistence and asymmetric volatility in the Nigerian stock bull and bear markets," Economic Modelling, Elsevier, vol. 38(C), pages 463-469.
    3. Ioannis A. Tampakoudis & Demetres N. Subeniotis & Ioannis G. Kroustalis, 2012. "Modelling volatility during the current financial crisis: an empirical analysis of the US and the UK stock markets," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(3/4), pages 171-194.

Articles

  1. Coelho do Vale, Rita & Verga Matos, Pedro & Caiado, Jorge, 2016. "The impact of private labels on consumer store loyalty: An integrative perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 28(C), pages 179-188.

    Cited by:

    1. Lacœuilhe, Jérôme & Louis, Didier & Lombart, Cindy, 2017. "Impacts of product, store and retailer perceptions on consumers’ relationship to terroir store brand," Journal of Retailing and Consumer Services, Elsevier, vol. 39(C), pages 43-53.
    2. İpek, İlayda & Aşkın, Nilay & İlter, Burcu, 2016. "Private label usage and store loyalty: The moderating impact of shopping value," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 72-79.
    3. Jérôme Lacoeuilhe & Didier Louis & Cindy Lombart, 2017. "Impacts of product, store and retailer perceptions on consumers’ relationship to terroir store brand," Post-Print hal-01672920, HAL.

  2. João A. Bastos & Jorge Caiado, 2014. "Clustering financial time series with variance ratio statistics," Quantitative Finance, Taylor & Francis Journals, vol. 14(12), pages 2121-2133, December.
    See citations under working paper version above.
  3. Luísa Carvalho & Teresa Costa & Jorge Caiado, 2013. "Determinants of innovation in a small open economy: a multidimensional perspective," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 14(3), pages 583-600, June.
    See citations under working paper version above.
  4. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    See citations under working paper version above.
  5. Jorge Caiado & Nuno Crato, 2010. "Identifying common dynamic features in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 797-807.
    See citations under working paper version above.
  6. Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.

    Cited by:

    1. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    2. Giulio Palomba & Emma Sarno & Alberto Zazzaro, 2009. "Testing similarities of short-run inflation dynamics among EU-25 countries after the Euro," Empirical Economics, Springer, vol. 37(2), pages 231-270, October.
    3. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    4. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    5. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    6. Caiado, Jorge & Crato, Nuno, 2008. "Identifying the evolution of stock markets stochastic structure after the euro," MPRA Paper 6609, University Library of Munich, Germany.
    7. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
    8. Umberto Triacca, 2016. "Measuring the Distance between Sets of ARMA Models," Econometrics, MDPI, Open Access Journal, vol. 4(3), pages 1-11, July.
    9. Bertsch, Valentin & Devine, Mel & Sweeney, Conor & Parnell, Andrew C., 2018. "Analysing long-term interactions between demand response and different electricity markets using a stochastic market equilibrium model," Papers WP585, Economic and Social Research Institute (ESRI).
    10. Harvill, Jane L. & Ravishanker, Nalini & Ray, Bonnie K., 2013. "Bispectral-based methods for clustering time series," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 113-131.
    11. Maharaj, Elizabeth Ann & D’Urso, Pierpaolo, 2010. "A coherence-based approach for the pattern recognition of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3516-3537.
    12. Alessandro De Gregorio & Stefano Iacus, 2008. "Clustering of discretely observed diffusion processes," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1077, Universitá degli Studi di Milano.
    13. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    14. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    15. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    16. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
    17. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
    18. Caiado, Jorge & Crato, Nuno, 2007. "Identifying common spectral and asymmetric features in stock returns," MPRA Paper 6607, University Library of Munich, Germany.
    19. Vilar, J.A. & Alonso, A.M. & Vilar, J.M., 2010. "Non-linear time series clustering based on non-parametric forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2850-2865, November.
    20. Borja Lafuente-Rego & José A. Vilar, 2016. "Clustering of time series using quantile autocovariances," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(3), pages 391-415, September.
    21. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    22. Liu, Shen & Maharaj, Elizabeth Ann, 2013. "A hypothesis test using bias-adjusted AR estimators for classifying time series in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 32-49.
    23. E. Otranto, 2008. "Clustering Heteroskedastic Time Series by Model-Based Procedures," Working Paper CRENoS 200801, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    24. Caiado, Jorge & Crato, Nuno, 2009. "Identifying common dynamic features in stock returns," MPRA Paper 15241, University Library of Munich, Germany.
    25. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2006. "An interpolated periodogram-based metric for comparison of time series with unequal lengths," MPRA Paper 2075, University Library of Munich, Germany.
    26. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    27. Robert Lund & Hany Bassily & Brani Vidakovic, 2009. "Testing equality of stationary autocovariances," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 332-348, May.
    28. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    29. Giulio PALOMBA & Emma SARNO & Alberto ZAZZARO, 2007. "Testing similarities of short-run inflation dynamics among EU countries after the Euro," Working Papers 289, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    30. Juan Vilar & José Vilar & Sonia Pértega, 2009. "Classifying Time Series Data: A Nonparametric Approach," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 3-28, April.
    31. Montero, Pablo & Vilar, José A., 2014. "TSclust: An R Package for Time Series Clustering," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i01).
    32. Douzal-Chouakria, Ahlame & Diallo, Alpha & Giroud, Françoise, 2009. "Adaptive clustering for time series: Application for identifying cell cycle expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1414-1426, February.
    33. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    34. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Is there an identity within international stock market volatilities?," MPRA Paper 2069, University Library of Munich, Germany.
    35. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

  7. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(1), pages 3-21.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Featured entries

This author is featured on the following reading lists, publication compilations or Wikipedia entries:
  1. Portuguese Economists

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 18 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (8) 2007-03-17 2007-03-17 2008-01-12 2008-01-12 2008-01-12 2009-05-16 2009-05-16 2009-05-30. Author is listed
  2. NEP-ETS: Econometric Time Series (7) 2007-03-17 2007-03-17 2008-01-12 2008-01-12 2009-05-16 2009-05-16 2009-05-30. Author is listed
  3. NEP-FMK: Financial Markets (4) 2009-05-16 2009-10-03 2010-07-31 2010-12-18
  4. NEP-FOR: Forecasting (4) 2007-03-17 2008-01-12 2009-05-16 2009-05-30
  5. NEP-CSE: Economics of Strategic Management (3) 2009-12-05 2012-10-13 2013-08-31
  6. NEP-RMG: Risk Management (3) 2007-03-17 2007-03-17 2008-01-12
  7. NEP-SBM: Small Business Management (3) 2009-12-05 2012-10-13 2013-08-31
  8. NEP-EEC: European Economics (2) 2007-03-17 2008-01-12
  9. NEP-ENT: Entrepreneurship (2) 2009-12-05 2013-08-31
  10. NEP-HRM: Human Capital & Human Resource Management (2) 2009-12-05 2013-08-31
  11. NEP-KNM: Knowledge Management & Knowledge Economy (2) 2009-12-05 2012-10-13
  12. NEP-SOC: Social Norms & Social Capital (2) 2009-12-05 2013-08-31
  13. NEP-SPO: Sports & Economics (2) 2007-03-17 2009-12-05
  14. NEP-IFN: International Finance (1) 2007-03-17
  15. NEP-INO: Innovation (1) 2012-10-13
  16. NEP-MAC: Macroeconomics (1) 2015-03-22
  17. NEP-ORE: Operations Research (1) 2008-01-12
  18. NEP-TID: Technology & Industrial Dynamics (1) 2012-10-13

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Jorge Caiado should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.