IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/2074.html
   My bibliography  Save this paper

A GARCH-based method for clustering of financial time series: International stock markets evidence

Author

Listed:
  • Caiado, Jorge
  • Crato, Nuno

Abstract

In this paper, we introduce a volatility-based method for clustering analysis of financial time series. Using the generalized autoregressive conditional heteroskedasticity (GARCH) models we estimate the distances between the stock return volatilities. The proposed method uses the volatility behavior of the time series and solves the problem of different lengths. As an illustrative example, we investigate the similarities among major international stock markets using daily return series with different sample sizes from 1966 to 2006. From cluster analysis, most European markets countries, United States and Canada appear close together, and most Asian/Pacific markets and the South/Middle American markets appear in a distinct cluster. After the terrorist attack on September 11, 2001, the European stock markets have become more homogenous, and North American markets, Japan and Australia seem to come closer.

Suggested Citation

  • Caiado, Jorge & Crato, Nuno, 2007. "A GARCH-based method for clustering of financial time series: International stock markets evidence," MPRA Paper 2074, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:2074
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/2074/1/MPRA_paper_2074.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Theodore Syriopoulos, 2004. "International portfolio diversification to Central European stock markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(17), pages 1253-1268.
    3. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2007. "Comparison of time series with unequal length," MPRA Paper 6605, University Library of Munich, Germany.
    4. Ball, Clifford A. & Torous, Walter N., 2000. "Stochastic correlation across international stock markets," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 373-388, November.
    5. Karolyi, G Andrew & Stulz, Rene M, 1996. " Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements," Journal of Finance, American Finance Association, vol. 51(3), pages 951-986, July.
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Bessler, David A. & Yang, Jian, 2003. "The structure of interdependence in international stock markets," Journal of International Money and Finance, Elsevier, vol. 22(2), pages 261-287, April.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Ammer, John & Mei, Jianping, 1996. " Measuring International Economic Linkages with Stock Market Data," Journal of Finance, American Finance Association, vol. 51(5), pages 1743-1763, December.
    10. Tak-Kee Hui, 2005. "Portfolio diversification: a factor analysis approach," Applied Financial Economics, Taylor & Francis Journals, vol. 15(12), pages 821-834.
    11. Ball, Clifford A. & Torous, Walter N., 2000. "Stochastic Correlation Across International Stock Markets," University of California at Los Angeles, Anderson Graduate School of Management qt6vn9q79w, Anderson Graduate School of Management, UCLA.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    14. A. Tahai & Robert Rutledge & Khondkar Karim, 2004. "An examination of financial integration for the group of seven (G7) industrialized countries using an I( ) cointegration model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(5), pages 327-335.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Sep 2017.
    2. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    3. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    4. Luca De Angelis, 2013. "Latent class models for financial data analysis: some statistical developments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 227-242, June.
    5. F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    Keywords

    Cluster analysis; GARCH; International stock markets; Volatility;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2074. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.