IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i10p2668-2684.html
   My bibliography  Save this article

A periodogram-based metric for time series classification

Author

Listed:
  • Caiado, Jorge
  • Crato, Nuno
  • Pena, Daniel

Abstract

No abstract is available for this item.

Suggested Citation

  • Caiado, Jorge & Crato, Nuno & Pena, Daniel, 2006. "A periodogram-based metric for time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2668-2684, June.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2668-2684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00077-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Battaglia, 1983. "Inverse Autocovariances And A Measure Of Linear Determinism For A Stationary Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(2), pages 79-87, March.
    2. Maharaj, Elizabeth Ann, 2002. "Comparison of non-stationary time series in the frequency domain," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 131-141, July.
    3. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    4. Guoqiang Zhang & Masanobu Taniguchi, 1994. "Discriminant Analysis For Stationary Vector Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(1), pages 117-126, January.
    5. Peter J. Diggle & Nicholas I. Fisher, 1991. "Nonparametric Comparison of Cumulative Periodograms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(3), pages 423-434, November.
    6. Katarina Košmelj & Vladimir Batagelj, 1990. "Cross-sectional approach for clustering time varying data," Journal of Classification, Springer;The Classification Society, vol. 7(1), pages 99-109, March.
    7. R. J. Bhansali, 1983. "A Simulation Study of Autoregressive and Window Estimators of the Inverse Correlation Function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 141-149, June.
    8. Francesco Battaglia, 1988. "On The Estimation Of The Inverse Correlation Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(1), pages 1-10, January.
    9. Antti J. Kanto, 1987. "A Formula For The Inverse Autocorrelation Function Of An Autoregressive Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 311-312, May.
    10. T. Subba Rao & M. M. Gabr, 1989. "The Estimation Of Spectrum, Inverse Spectrum And Inverse Autocovariances Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(2), pages 183-202, March.
    11. Galeano, Pedro & Peña, Daniel, 2001. "Multivariate analysis in vector time series," DES - Working Papers. Statistics and Econometrics. WS ws012415, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. H. Glendinning, 2000. "Estimating the Inverse Autocorrelation Function from Outlier Contaminated Data," Computational Statistics, Springer, vol. 15(4), pages 541-565, December.
    2. Mahmoudi, Mohammad Reza, 2021. "A computational technique to classify several fractional Brownian motion processes," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Sonia Díaz & José Vilar, 2010. "Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 333-362, November.
    4. Dette, Holger & Paparoditis, Efstathios, 2008. "Bootstrapping frequency domain tests in multivariate time series with an application to comparing spectral densities," Technical Reports 2008,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Roberto Baragona & Francesco Battaglia, 1995. "Linear Interpolators And The Inverse Correlation Function Of Non‐Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 531-538, November.
    6. Proietti, Tommaso & Luati, Alessandra, 2015. "The generalised autocovariance function," Journal of Econometrics, Elsevier, vol. 186(1), pages 245-257.
    7. Beibei Zhang & Rong Chen, 2018. "Nonlinear Time Series Clustering Based on Kolmogorov-Smirnov 2D Statistic," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 394-421, October.
    8. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    9. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    10. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    11. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    12. Caiado, Jorge & Crato, Nuno & Peña, Daniel, 2009. "Comparison of time series with unequal length in the frequency domain," MPRA Paper 15310, University Library of Munich, Germany.
    13. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
    14. Alonso, A.M. & Berrendero, J.R. & Hernandez, A. & Justel, A., 2006. "Time series clustering based on forecast densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 762-776, November.
    15. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    16. Sipan Aslan & Ceylan Yozgatligil & Cem Iyigun, 2018. "Temporal clustering of time series via threshold autoregressive models: application to commodity prices," Annals of Operations Research, Springer, vol. 260(1), pages 51-77, January.
    17. Preuß, Philip & Hildebrandt, Thimo, 2013. "Comparing spectral densities of stationary time series with unequal sample sizes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1174-1183.
    18. Alessandra Luati & Francesca Papagni & Tommaso Proietti, 2021. "Efficient Nonparametric Estimation of Generalized Autocovariances," CEIS Research Paper 515, Tor Vergata University, CEIS, revised 14 Oct 2021.
    19. Caiado, Jorge & Crato, Nuno, 2005. "Discrimination between deterministic trend and stochastic trend processes," MPRA Paper 2076, University Library of Munich, Germany.
    20. Dette, Holger & Paroditis, Efstathios, 2007. "Testing equality of spectral densities," Technical Reports 2007,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2668-2684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.