IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Multivariate analysis in vector time series

Listed author(s):
  • Peña, Daniel
  • Galeano, Pedro

This paper reviews the applications of classical multivariate techniques for discrimination, clustering and dimension reduction for time series data. It is shown that the discrimination problem can be seen as a model selection problem. Some of the results obtained in the time domain are reviewed. Clustering time series requires the definition of an adequate metric between univariate time series and several possible metrics are analyzed. Dimension reduction has been a very active line of research in the time series literature and the dynamic principal components or canonical analysis of Box and Tiao (1977) and the factor model as developed by Peña and Box (1987) and Peña and Poncela (1998) are analyzed. The relation between the nonstationary factor model and the cointegration literature is also reviewed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://e-archivo.uc3m.es/bitstream/handle/10016/162/ws012415.pdf?sequence=1
Download Restriction: no

Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws012415.

as
in new window

Length:
Date of creation: Mar 2001
Handle: RePEc:cte:wsrepe:ws012415
Contact details of provider: Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Peter Molenaar & Jan Gooijer & Bernhard Schmitz, 1992. "Dynamic factor analysis of nonstationary multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 333-349, September.
  2. Peter Molenaar, 1985. "A dynamic factor model for the analysis of multivariate time series," Psychometrika, Springer;The Psychometric Society, vol. 50(2), pages 181-202, June.
  3. Chaudhuri, G., 1992. "Linear discriminant function for complex normal time series," Statistics & Probability Letters, Elsevier, vol. 15(4), pages 277-279, November.
  4. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws012415. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.