IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Phase and amplitude-based clustering for functional data

Listed author(s):
  • Slaets, Leen
  • Claeskens, Gerda
  • Hubert, Mia
Registered author(s):

    Functional data that are not perfectly aligned in the sense of not showing peaks and valleys at the precise same locations possess phase variation. This is commonly addressed by preprocessing the data via a warping procedure. As opposed to treating phase variation as a nuisance effect, it is advantageous to recognize it as a possible important source of information for clustering. It is illustrated how results from a multiresolution warping procedure can be used for clustering. This approach allows us to address detailed questions to find local clusters that differ in phase, or clusters that differ in amplitude, or both simultaneously.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 7 ()
    Pages: 2360-2374

    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2360-2374
    DOI: 10.1016/j.csda.2012.01.017
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. C. Abraham & P. A. Cornillon & E. Matzner-Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B-Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595.
    2. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    3. Struyf, Anja & Hubert, Mia & Rousseeuw, Peter J., 1997. "Integrating robust clustering techniques in S-PLUS," Computational Statistics & Data Analysis, Elsevier, vol. 26(1), pages 17-37, November.
    4. Jeng-Min Chiou & Pai-Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    7. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    8. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    9. Douzal-Chouakria, Ahlame & Diallo, Alpha & Giroud, Françoise, 2009. "Adaptive clustering for time series: Application for identifying cell cycle expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1414-1426, February.
    10. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    11. James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
    12. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    13. Luis Angel Garcia-Escudero & Alfonso Gordaliza, 2005. "A Proposal for Robust Curve Clustering," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 185-201, September.
    14. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    15. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694.
    16. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2360-2374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.