IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i7p2360-2374.html
   My bibliography  Save this article

Phase and amplitude-based clustering for functional data

Author

Listed:
  • Slaets, Leen
  • Claeskens, Gerda
  • Hubert, Mia

Abstract

Functional data that are not perfectly aligned in the sense of not showing peaks and valleys at the precise same locations possess phase variation. This is commonly addressed by preprocessing the data via a warping procedure. As opposed to treating phase variation as a nuisance effect, it is advantageous to recognize it as a possible important source of information for clustering. It is illustrated how results from a multiresolution warping procedure can be used for clustering. This approach allows us to address detailed questions to find local clusters that differ in phase, or clusters that differ in amplitude, or both simultaneously.

Suggested Citation

  • Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2360-2374
    DOI: 10.1016/j.csda.2012.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000370
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Abraham & P. A. Cornillon & E. Matzner-Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B-Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595.
    2. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    3. Struyf, Anja & Hubert, Mia & Rousseeuw, Peter J., 1997. "Integrating robust clustering techniques in S-PLUS," Computational Statistics & Data Analysis, Elsevier, vol. 26(1), pages 17-37, November.
    4. Jeng-Min Chiou & Pai-Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699.
    5. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    6. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    7. James G.M. & Sugar C.A., 2003. "Clustering for Sparsely Sampled Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 397-408, January.
    8. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    9. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    10. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    11. Douzal-Chouakria, Ahlame & Diallo, Alpha & Giroud, Françoise, 2009. "Adaptive clustering for time series: Application for identifying cell cycle expressed genes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1414-1426, February.
    12. Luis Angel Garcia-Escudero & Alfonso Gordaliza, 2005. "A Proposal for Robust Curve Clustering," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 185-201, September.
    13. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    14. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    15. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior-posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694.
    16. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:biomet:v:73:y:2017:i:1:p:324-333 is not listed on IDEAS
    2. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    3. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:7:p:2360-2374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.