IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i1p293-304.html
   My bibliography  Save this article

Ensemble clustering for step data via binning

Author

Listed:
  • Ja‐Yoon Jang
  • Hee‐Seok Oh
  • Yaeji Lim
  • Ying Kuen Cheung

Abstract

This paper considers the clustering problem of physical step count data recorded on wearable devices. Clustering step data give an insight into an individual's activity status and further provide the groundwork for health‐related policies. However, classical methods, such as K‐means clustering and hierarchical clustering, are not suitable for step count data that are typically high‐dimensional and zero‐inflated. This paper presents a new clustering method for step data based on a novel combination of ensemble clustering and binning. We first construct multiple sets of binned data by changing the size and starting position of the bin, and then merge the clustering results from the binned data using a voting method. The advantage of binning, as a critical component, is that it substantially reduces the dimension of the original data while preserving the essential characteristics of the data. As a result, combining clustering results from multiple binned data can provide an improved clustering result that reflects both local and global structures of the data. Simulation studies and real data analysis were carried out to evaluate the empirical performance of the proposed method and demonstrate its general utility.

Suggested Citation

  • Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:293-304
    DOI: 10.1111/biom.13258
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13258
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. Abraham & P. A. Cornillon & E. Matzner‐Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B‐Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595, September.
    2. M. Giacofci & S. Lambert-Lacroix & G. Marot & F. Picard, 2013. "Wavelet-Based Clustering for Mixed-Effects Functional Models in High Dimension," Biometrics, The International Biometric Society, vol. 69(1), pages 31-40, March.
    3. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    4. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    5. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    6. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    2. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    3. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    4. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    5. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    7. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    8. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    10. C. Denis & E. Lebarbier & C. Lévy‐Leduc & O. Martin & L. Sansonnet, 2020. "A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 623-640, June.
    11. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    12. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
    13. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    14. Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
    15. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    16. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    17. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    18. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    20. Ana Justel & Marcela Svarc, 2018. "A divisive clustering method for functional data with special consideration of outliers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 637-656, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:1:p:293-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.