IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02312965.html

Clustering Financial Time Series by Network Community Analysis

Author

Listed:
  • Carlo Piccardi

    (POLIMI - Politecnico di Milano [Milan])

  • Lisa Calatroni

    (POLIMI - Politecnico di Milano [Milan])

  • Fabio Bertoni

    (POLIMI - Politecnico di Milano [Milan])

Abstract

In this paper, we describe a method for clustering financial time series which is based on community analysis, a recently developed approach for partitioning the nodes of a network (graph). A network with N nodes is associated to the set of N time series. The weight of the link (i, j), which quantifies the similarity between the two corresponding time series, is defined according to a metric based on symbolic time series analysis, which has recently proved effective in the context of financial time series. Then, searching for network communities allows one to identify groups of nodes (and then time series) with strong similarity. A quantitative assessment of the significance of the obtained partition is also provided. The method is applied to two distinct case-studies concerning the US and Italy Stock Exchange, respectively. In the US case, the stability of the partitions over time is also thoroughly investigated. The results favorably compare with those obtained with the standard tools typically used for clustering financial time series, such as the minimal spanning tree and the hierarchical tree.

Suggested Citation

  • Carlo Piccardi & Lisa Calatroni & Fabio Bertoni, 2011. "Clustering Financial Time Series by Network Community Analysis," Post-Print hal-02312965, HAL.
  • Handle: RePEc:hal:journl:hal-02312965
    DOI: 10.1142/S012918311101604X
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erick Treviño Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-31, October.
    2. Erick Trevi~no Aguilar, 2020. "The interdependency structure in the Mexican stock exchange: A network approach," Papers 2004.06676, arXiv.org.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    5. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," Papers 1504.00590, arXiv.org.
    6. Maximilian Gobel & Tanya Araújo, 2020. "Indicators of Economic Crises: A Data-Driven Clustering Approach," Working Papers REM 2020/0128, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    7. Carlo Drago & Andrea Scozzari, 2023. "A Network-Based Analysis for Evaluating Conditional Covariance Estimates," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    8. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    9. Maximilian Göbel & Tanya Araújo, 2018. "The 21st Century - Cluster Formation in the S&P 500," Working Papers REM 2018/43, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    10. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02312965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.