IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Skewness and the linear discriminant function

Listed author(s):
  • Loperfido, Nicola

Fisher’s linear discriminant function might be difficult to estimate, when data come from a semiparametric, finite mixture model. We propose an estimator based on the singular value decomposition of the third standardized cumulant. The estimator is consistent when sampling from a mixture of two symmetric, homoscedastic components with finite third moments and different weights. We also evaluate its performance and compare it with another estimator, which uses the eigenvectors of a kurtosis matrix.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Statistics & Probability Letters.

Volume (Year): 83 (2013)
Issue (Month): 1 ()
Pages: 93-99

in new window

Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:93-99
DOI: 10.1016/j.spl.2012.08.032
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
  2. T. P. Hettmansperger & Hoben Thomas, 2000. "Almost nonparametric inference for repeated measures in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 811-825.
  3. Peña, Daniel & Prieto, Francisco J. & Viladomat, Júlia, 2010. "Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1995-2007, October.
  4. Peña, Daniel & Prieto, Francisco J., 2000. "The kurtosis coefficient and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 49(3), pages 257-261, September.
  5. Marc Genton & Nicola Loperfido, 2005. "Generalized skew-elliptical distributions and their quadratic forms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(2), pages 389-401, June.
  6. Posse, Christian, 1995. "Projection pursuit exploratory data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 669-687, December.
  7. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
  8. Pena D. & Prieto F.J., 2001. "Cluster Identification Using Projections," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1433-1445, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:93-99. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.