IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i10p2328-2338.html
   My bibliography  Save this article

Multivariate skewness and kurtosis measures with an application in ICA

Author

Listed:
  • Kollo, Tõnu

Abstract

In this paper skewness and kurtosis characteristics of a multivariate p-dimensional distribution are introduced. The skewness measure is defined as a p-vector while the kurtosis is characterized by a pxp-matrix. The introduced notions are extensions of the corresponding measures of Mardia [K.V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika 57 (1970) 519-530] and Mori, Rohatgi & Szekely [T.F. Mori, V.K. Rohatgi, G.J. Szekely, On multivariate skewness and kurtosis, Theory Probab. Appl. 38 (1993) 547-551]. Basic properties of the characteristics are examined and compared with both the above-mentioned results in the literature. Expressions for the measures of skewness and kurtosis are derived for the multivariate Laplace distribution. The kurtosis matrix is used in Independent Component Analysis (ICA) where the solution of an eigenvalue problem of the kurtosis matrix determines the transformation matrix of interest [A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley, New York, 2001].

Suggested Citation

  • Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2328-2338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00062-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutjahr, Steffen & Henze, Norbert & Folkers, Martin, 1999. "Shortcomings of Generalized Affine Invariant Skewness Measures," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 1-23, October.
    2. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    3. Klar, Bernhard, 2002. "A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 141-165, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    2. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    3. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    4. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    5. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    6. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    7. Baltagi, Badi H. & Bresson, Georges & Chaturvedi, Anoop & Lacroix, Guy, 2022. "Robust Dynamic Space-Time Panel Data Models Using ?-Contamination: An Application to Crop Yields and Climate Change," IZA Discussion Papers 15815, Institute of Labor Economics (IZA).
    8. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    9. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    10. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    11. Nason, Guy P., 2006. "On the sum of t and Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1280-1286, July.
    12. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    13. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    14. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    15. Singh, Vikas Vikram & Lisser, Abdel & Arora, Monika, 2021. "An equivalent mathematical program for games with random constraints," Statistics & Probability Letters, Elsevier, vol. 174(C).
    16. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
    17. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    18. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    19. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi, 2021. "A formulation for continuous mixtures of multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    20. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2328-2338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.