IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v219y2025ics0167715224003079.html
   My bibliography  Save this article

The method of moments for multivariate random sums in the Poisson-Skew-Normal case

Author

Listed:
  • Javed, Farrukh
  • Loperfido, Nicola
  • Mazur, Stepan

Abstract

Multivariate random sums appear in many scientific fields, most notably in actuarial science, where they model both the number of claims and their sizes. Unfortunately, they pose severe inferential problems. For example, their density function is analytically intractable, in the general case, thus preventing likelihood inference. In this paper, we address the problem by the method of moments, under the assumption that the claim size and the claim number have a multivariate skew-normal and a Poisson distribution, respectively. In doing so, we also derive closed-form expressions for some fundamental measures of multivariate kurtosis and highlight some limitations of both projection pursuit and invariant coordinate selection.

Suggested Citation

  • Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2025. "The method of moments for multivariate random sums in the Poisson-Skew-Normal case," Statistics & Probability Letters, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:stapro:v:219:y:2025:i:c:s0167715224003079
    DOI: 10.1016/j.spl.2024.110338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224003079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Archimbaud, Aurore & Nordhausen, Klaus & Ruiz-Gazen, Anne, 2018. "ICS for multivariate outlier detection with application to quality control," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 184-199.
    2. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    3. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    4. Peña, Daniel & Prieto, Francisco J. & Viladomat, Júlia, 2010. "Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1995-2007, October.
    5. Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    6. Pena D. & Prieto F.J., 2001. "Cluster Identification Using Projections," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1433-1445, December.
    7. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
    8. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    9. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    10. Ambagaspitiya, Rohana S., 1999. "On the distributions of two classes of correlated aggregate claims," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 301-308, May.
    11. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    12. Nicola Loperfido & Stepan Mazur & Krzysztof Podgórski, 2018. "Third cumulant for multivariate aggregate claim models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2018(2), pages 109-128, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "The Method of Moments for Multivariate Random Sums," Working Papers 2024:6, Örebro University, School of Business.
    2. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
    3. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    4. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    5. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    6. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.
    7. Ignatieva, Katja & Landsman, Zinoviy, 2021. "A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 437-465.
    8. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    9. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    10. Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    11. Loperfido, Nicola, 2013. "Skewness and the linear discriminant function," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 93-99.
    12. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    13. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    14. Alashwali, Fatimah & Kent, John T., 2016. "The use of a common location measure in the invariant coordinate selection and projection pursuit," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 145-161.
    15. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    16. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    17. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.
    18. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2025. "Hidden semi-Markov models for rainfall-related insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 91-106.
    19. Shi, Yue & Punzo, Antonio & Otneim, Håkon & Maruotti, Antonello, 2023. "Hidden semi-Markov models for rainfall-related insurance claims," Discussion Papers 2023/17, Norwegian School of Economics, Department of Business and Management Science.
    20. Azima, A.M. & Jamaluddin, Faathirah & Ramli, Zaimah & Saad, Suhana & Lyndon, Novel, 2024. "Communal grant and land allocation effect on native land disputation in Malaysia," Land Use Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:219:y:2025:i:c:s0167715224003079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.