IDEAS home Printed from https://ideas.repec.org/a/oup/oxecpp/v69y2017i4p939-962..html
   My bibliography  Save this article

Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country

Author

Listed:
  • Hai-Anh H. Dang
  • Peter F. Lanjouw
  • Umar Serajuddin

Abstract

Monitoring poverty trends on a timely and consistent basis is a priority for policymakers. These objectives are difficult to achieve in practice when household consumption (income) data are neither frequently collected, nor collected using consistent criteria. This paper develops and applies a simple framework for survey-to-survey poverty imputation in an attempt to overcome these obstacles. The framework introduced here imposes few restrictive assumptions, works with simple variance formulas, provides general guidance on the selection of control variables for model building, and can be applied to imputation involving surveys with either the same, or differing, sampling designs. Results from combining Jordan’s Household Expenditure and Income Survey (HEIS) with its Unemployment and Employment Survey (LFS) are quite encouraging, with imputation-based poverty estimates closely tracking direct estimates of poverty.

Suggested Citation

  • Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
  • Handle: RePEc:oup:oxecpp:v:69:y:2017:i:4:p:939-962.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/oep/gpx020
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    2. Alessandro Tarozzi & Angus Deaton, 2009. "Using Census and Survey Data to Estimate Poverty and Inequality for Small Areas," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 773-792, November.
    3. Tarozzi, Alessandro, 2007. "Calculating Comparable Statistics From Incomparable Surveys, With an Application to Poverty in India," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 314-336, July.
    4. Beegle, Kathleen & De Weerdt, Joachim & Friedman, Jed & Gibson, John, 2012. "Methods of household consumption measurement through surveys: Experimental results from Tanzania," Journal of Development Economics, Elsevier, vol. 98(1), pages 3-18.
    5. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    6. Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar & Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar, 2014. "Updating poverty estimates at frequent intervals in the absence of consumption data : methods and illustration with reference to a middle-income country," Policy Research Working Paper Series 7043, The World Bank.
    7. Dang,Hai-Anh H. & Lanjouw,Peter F., 2013. "Measuring poverty dynamics with synthetic panels based on cross-sections," Policy Research Working Paper Series 6504, The World Bank.
    8. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," World Bank Economic Review, World Bank Group, vol. 30(3), pages 475-500.
    9. John Gibson & Jikun Huang & Scott Rozelle, 2003. "Improving Estimates of Inequality and Poverty from Urban China's Household Income and Expenditure Survey," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(1), pages 53-68, March.
    10. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, September.
    11. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    12. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    13. Martin Browning & Thomas F. Crossley & Joachim Winter, 2014. "The Measurement of Household Consumption Expenditures," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 475-501, August.
    14. Katharine G. Abraham & John Haltiwanger & Kristin Sandusky & James R. Spletzer, 2013. "Exploring Differences in Employment between Household and Establishment Data," Journal of Labor Economics, University of Chicago Press, vol. 31(S1), pages 129-172.
    15. Hai-Anh H. Dang & Minh Cong Nguyen, 2014. "POVIMP: Stata module to provide poverty estimates in the absence of actual consumption data," Statistical Software Components S457934, Boston College Department of Economics.
    16. Stephen P. Jenkins & Richard V. Burkhauser & Shuaizhang Feng & Jeff Larrimore, 2011. "Measuring inequality using censored data: a multiple‐imputation approach to estimation and inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 63-81, January.
    17. Angus Deaton & Jean Dreze, 2002. "Poverty and Inequality in India: A Re-Examination," Working Papers 184, Princeton University, Woodrow Wilson School of Public and International Affairs, Research Program in Development Studies..
    18. Astrid Mathiassen, 2013. "Testing Prediction Performance of Poverty Models: Empirical Evidence from U ganda," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(1), pages 91-112, March.
    19. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    20. David Stifel & Luc Christiaensen, 2007. "Tracking Poverty Over Time in the Absence of Comparable Consumption Data," World Bank Economic Review, World Bank Group, vol. 21(2), pages 317-341, June.
    21. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    22. repec:pri:rpdevs:deaton_dreze_poverty_india is not listed on IDEAS
    23. Astrid Mathiassen, 2009. "A model based approach for predicting annual poverty rates without expenditure data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 117-135, June.
    24. Richard Bavier, 2014. "Recent Trends in U.S. Income and Expenditure Poverty," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 33(3), pages 700-718, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar & Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar, 2014. "Updating poverty estimates at frequent intervals in the absence of consumption data : methods and illustration with reference to a middle-income country," Policy Research Working Paper Series 7043, The World Bank.
    2. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    3. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    4. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    5. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    6. Talip Kilic & Thomas Pave Sohnesen, 2019. "Same Question But Different Answer: Experimental Evidence on Questionnaire Design's Impact on Poverty Measured by Proxies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(1), pages 144-165, March.
    7. Ahmed, Faizuddin & Dorji, Cheku & Takamatsu, Shinya & Yoshida, Nobuo, 2014. "Hybrid survey to improve the reliability of poverty statistics in a cost-effective manner," Policy Research Working Paper Series 6909, The World Bank.
    8. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2017. "When the Centre Cannot Hold: Patterns of Polarization in Nigeria," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 608-632, December.
    9. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Other Operational Studies 24410, The World Bank.
    10. Newhouse, D. & Shivakumaran, S. & Takamatsu, S. & Yoshida, N., 2014. "How survey-to-survey imputation can fail," Policy Research Working Paper Series 6961, The World Bank.
    11. Dang, Hai-Anh H. & Verme, Paolo, 2019. "Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?," GLO Discussion Paper Series 429, Global Labor Organization (GLO).
    12. Theresa Beltramo & Hai-Anh H. Dang & Ibrahima Sarr & Paolo Verme, 2020. "Estimating Poverty among Refugee Populations: A Cross-Survey Imputation Exercise for Chad," Working Papers 536, ECINEQ, Society for the Study of Economic Inequality.
    13. Diana Chiliquinga & Gaurav Datt, 2016. "Changing Betas or Changing X’s? Evolution of Income and Poverty in Ecuador, 2001-12," Monash Economics Working Papers 14-16, Monash University, Department of Economics.
    14. World Bank, 2016. "Poverty Reduction in Nigeria in the Last Decade," World Bank Other Operational Studies 25825, The World Bank.
    15. Melanie Morten, 2006. "Indian Poverty during the 1990s: Resolving Methodological Issues from the 55th NSS Round," ASARC Working Papers 2006-07, The Australian National University, Australia South Asia Research Centre.
    16. , 2020. "Decomposing the Fiscal Multiplier," Working Paper Series 2020-12, Federal Reserve Bank of San Francisco.
    17. repec:dgr:rugggd:gd-114 is not listed on IDEAS
    18. Dang, Hai-Anh H. & Serajuddin, Umar, 2020. "Tracking the sustainable development goals: Emerging measurement challenges and further reflections," World Development, Elsevier, vol. 127(C).
    19. Wagner Joachim, 2016. "Still Different After All These Years Extensive and Intensive Margins of Exports in East and West German Manufacturing Enterprises," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(2), pages 297-322, March.
    20. Ceriani,Lidia & Inchauste Comboni,Maria Gabriela & Olivieri,Sergio Daniel, 2015. "Understanding poverty reduction in Sri Lanka : evidence from 2002 to 2012/13," Policy Research Working Paper Series 7446, The World Bank.
    21. Niels-Hugo Blunch & Maitreyi Bordia Das, 2015. "Changing norms about gender inequality in education: Evidence from Bangladesh," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(6), pages 183-218.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:oxecpp:v:69:y:2017:i:4:p:939-962.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) The email address of this maintainer does not seem to be valid anymore. Please ask Oxford University Press to update the entry or send us the correct email address or (Christopher F. Baum). General contact details of provider: https://academic.oup.com/oep .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.