IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Estimating quarterly poverty rates using labor force surveys : a primer

  • Douidich, Mohamed
  • Ezzrari, Abdeljaouad
  • Van der Weide, Roy
  • Verme, Paolo

The paper shows how Labor Force Surveys can be used effectively to estimate poverty rates using Household Expenditure Surveys and cross-survey imputation methods. With only two rounds of Household Expenditure Survey data for Morocco (2001 and 2007), the paper estimates quarterly poverty rates for the period 2001-2010 by imputing household expenditures into the Labor Force Surveys. The results are encouraging. The methodology is able to accurately reproduce official poverty statistics by combining current Labor Force Surveys with previous period Household Expenditure Surveys, and vice versa. Although the focus is on head-count poverty, the method can be applied to any welfare indicator that is a function of household income or expenditure, such as the poverty gap or the Gini index of inequality. The newly produced time-series of poverty rates can help researchers and policy makers to: (a) study the determinants of poverty reduction or use poverty as an explanatory factor in cross-section and panel models; (b) forecast poverty rates based on a time-series model fitted to the data; and (c) explore the linkages between labor market conditions and poverty and simulate the effects of policy reforms or economic shocks. This is a promising research agenda that can expand significantly the tool-kit of the welfare economist.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by The World Bank in its series Policy Research Working Paper Series with number 6466.

in new window

Date of creation: 01 May 2013
Date of revision:
Handle: RePEc:wbk:wbrwps:6466
Contact details of provider: Postal: 1818 H Street, N.W., Washington, DC 20433
Phone: (202) 477-1234
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Christiaensen, Luc & Lanjouw, Peter & Luoto, Jill & Stifel, David, 2011. "Small area estimation-based prediction methods to track poverty : validation and applications," Policy Research Working Paper Series 5683, The World Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:6466. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Roula I. Yazigi)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.