IDEAS home Printed from https://ideas.repec.org/p/zbw/glodps/904.html
   My bibliography  Save this paper

Data Scarcity and Poverty Measurement

Author

Listed:
  • Dang, Hai-Anh H.
  • Lanjouw, Peter F.

Abstract

Measuring poverty trends and dynamics is an important undertaking for poverty reduction policies, which is further highlighted by the SDG goal 1 on eradicating poverty by 2030. We provide a broad overview of the pros and cons of poverty imputation in data-scarce environments, update recent review papers, and point to the latest research on the topics. We briefly review two common uses of poverty imputation methods that aim at tracking poverty over time and estimating poverty dynamics. We also discuss new areas for imputation.

Suggested Citation

  • Dang, Hai-Anh H. & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," GLO Discussion Paper Series 904, Global Labor Organization (GLO).
  • Handle: RePEc:zbw:glodps:904
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/236203/1/GLO-DP-0904.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    2. Beegle, Kathleen & De Weerdt, Joachim & Friedman, Jed & Gibson, John, 2012. "Methods of household consumption measurement through surveys: Experimental results from Tanzania," Journal of Development Economics, Elsevier, vol. 98(1), pages 3-18.
    3. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    4. Brown, Caitlin & Ravallion, Martin & van de Walle, Dominique, 2018. "A poor means test? Econometric targeting in Africa," Journal of Development Economics, Elsevier, vol. 134(C), pages 109-124.
    5. Tarozzi, Alessandro, 2007. "Calculating Comparable Statistics From Incomparable Surveys, With an Application to Poverty in India," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 314-336, July.
    6. John Gibson & Jikun Huang & Scott Rozelle, 2003. "Improving Estimates of Inequality and Poverty from Urban China's Household Income and Expenditure Survey," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(1), pages 53-68, March.
    7. Sahn, David E. & Stifel, David C., 2000. "Poverty Comparisons Over Time and Across Countries in Africa," World Development, Elsevier, vol. 28(12), pages 2123-2155, December.
    8. Deon Filmer & Kinnon Scott, 2012. "Assessing Asset Indices," Demography, Springer;Population Association of America (PAA), vol. 49(1), pages 359-392, February.
    9. David Coady, 2004. "Targeting Outcomes Redux," The World Bank Research Observer, World Bank Group, vol. 19(1), pages 61-85.
    10. Dang, Hai-Anh H. & Verme, Paolo, 2019. "Estimating Poverty for Refugee Populations: Can Cross-Survey Imputation Methods Substitute for Data Scarcity?," GLO Discussion Paper Series 429, Global Labor Organization (GLO).
    11. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    12. Jean Olson Lanjouw & Peter Lanjouw, 2001. "How to Compare Apples And Oranges: Poverty Measurement Based on Different Definitions of Consumption," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 47(1), pages 25-42, March.
    13. Deon Filmer & Lant Pritchett, 2001. "Estimating Wealth Effects Without Expenditure Data—Or Tears: An Application To Educational Enrollments In States Of India," Demography, Springer;Population Association of America (PAA), vol. 38(1), pages 115-132, February.
    14. Nicolas Hérault & Stephen P. Jenkins, 2019. "How valid are synthetic panel estimates of poverty dynamics?," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 17(1), pages 51-76, March.
    15. Astrid Mathiassen, 2013. "Testing Prediction Performance of Poverty Models: Empirical Evidence from U ganda," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(1), pages 91-112, March.
    16. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    17. Kathleen Beegle & Luc Christiaensen & Andrew Dabalen & Isis Gaddis, 2016. "Poverty in a Rising Africa," World Bank Publications - Books, The World Bank Group, number 22575, December.
    18. David Stifel & Luc Christiaensen, 2007. "Tracking Poverty Over Time in the Absence of Comparable Consumption Data," The World Bank Economic Review, World Bank Group, vol. 21(2), pages 317-341, June.
    19. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank Group, vol. 30(3), pages 475-500.
    20. Ravallion, Martin, 2016. "The Economics of Poverty: History, Measurement, and Policy," OUP Catalogue, Oxford University Press, number 9780190212773, April.
    21. Andy Sumner & Christopher Hoy & Eduardo Ortiz-Juarez, 2020. "Estimates of the impact of COVID-19 on global poverty," WIDER Working Paper Series wp-2020-43, World Institute for Development Economic Research (UNU-WIDER).
    22. Astrid Mathiassen, 2009. "A model based approach for predicting annual poverty rates without expenditure data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 117-135, June.
    23. Margaret Grosh & Carlo del Ninno & Emil Tesliuc & Azedine Ouerghi, 2008. "For Protection and Promotion : The Design and Implementation of Effective Safety Nets," World Bank Publications - Books, The World Bank Group, number 6582, December.
    24. Dang, Hai-Anh & Lanjouw, Peter & Luoto, Jill & McKenzie, David, 2014. "Using repeated cross-sections to explore movements into and out of poverty," Journal of Development Economics, Elsevier, vol. 107(C), pages 112-128.
    25. Alessandro Tarozzi & Angus Deaton, 2009. "Using Census and Survey Data to Estimate Poverty and Inequality for Small Areas," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 773-792, November.
    26. Hai-Anh H. Dang, 2019. "To impute or not to impute, and how? A review of alternative poverty estimation methods in the context of unavailable consumption data," Working Papers 507, ECINEQ, Society for the Study of Economic Inequality.
    27. Dang, Hai-Anh & Huynh, Toan L. D. & Nguyen, Manh-Hung, 2020. "Does the COVID-19 Pandemic Disproportionately Affect the Poor? Evidence from a Six-Country Survey," IZA Discussion Papers 13352, Institute of Labor Economics (IZA).
    28. Angus Deaton & Valerie Kozel, 2005. "Data and Dogma: The Great Indian Poverty Debate," The World Bank Research Observer, World Bank Group, vol. 20(2), pages 177-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    2. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    3. Hai-Anh Dang & Peter Lanjouw, 2022. "Regression-based Imputation for Poverty Measurement in Data Scarce Settings," Working Papers 611, ECINEQ, Society for the Study of Economic Inequality.
    4. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    5. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    6. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    7. Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar & Dang,Hai-Anh H. & Lanjouw,Peter F. & Serajuddin,Umar, 2014. "Updating poverty estimates at frequent intervals in the absence of consumption data : methods and illustration with reference to a middle-income country," Policy Research Working Paper Series 7043, The World Bank.
    8. Theresa Beltramo & Hai-Anh H. Dang & Ibrahima Sarr & Paolo Verme, 2020. "Estimating Poverty among Refugee Populations: A Cross-Survey Imputation Exercise for Chad," Working Papers 536, ECINEQ, Society for the Study of Economic Inequality.
    9. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    10. Hai-Anh H. Dang, 2019. "To impute or not to impute, and how? A review of alternative poverty estimation methods in the context of unavailable consumption data," Working Papers 507, ECINEQ, Society for the Study of Economic Inequality.
    11. Talip Kilic & Thomas Pave Sohnesen, 2019. "Same Question But Different Answer: Experimental Evidence on Questionnaire Design's Impact on Poverty Measured by Proxies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(1), pages 144-165, March.
    12. Lovaton Davila, Rodrigo & McCarthy, Aine Seitz & Gondwe, Dorothy & Kirdruang, Phatta & Sharma, Uttam, 2022. "Water, walls, and bicycles: wealth index composition using census microdata," Journal of Demographic Economics, Cambridge University Press, vol. 88(1), pages 79-120, March.
    13. Dang, Hai-Anh & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    14. Ligon, Ethan & Christiaensen, Luc & Sohnesen, Thomas P, 2020. "Should Consumption Sub-Aggregates be Used to Measure Poverty?," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9b9929jh, Department of Agricultural & Resource Economics, UC Berkeley.
    15. F. Clementi & A. L. Dabalen & V. Molini & F. Schettino, 2017. "When the Centre Cannot Hold: Patterns of Polarization in Nigeria," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 608-632, December.
    16. Dang,Hai-Anh H. & Verme,Paolo, 2019. "Estimating Poverty for Refugee Populations : Can Cross-Survey Imputation Methods Substitute for Data Scarcity ?," Policy Research Working Paper Series 9076, The World Bank.
    17. Permanyer, Iñaki, 2013. "Using Census Data to Explore the Spatial Distribution of Human Development," World Development, Elsevier, vol. 46(C), pages 1-13.
    18. Diana K. L. Ngo & Luc Christiaensen, 2019. "The Performance Of A Consumption Augmented Asset Index In Ranking Households And Identifying The Poor," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(4), pages 804-833, December.
    19. World Bank, 2016. "Tunisia Poverty Assessment 2015," World Bank Publications - Reports 24410, The World Bank Group.
    20. Newhouse, D. & Shivakumaran, S. & Takamatsu, S. & Yoshida, N., 2014. "How survey-to-survey imputation can fail," Policy Research Working Paper Series 6961, The World Bank.

    More about this item

    Keywords

    poverty; imputation; consumption; wealth index; synthetic panels; household survey;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:glodps:904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/glabode.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/glabode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.